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What does the ‘quality’ of a dataset represent?
• The highest quality dataset represents the idealised information required for formal causal

representation (e.g. simulated data).
• However big a dataset is, causal discovery is sub-optimal in the absence of a ‘high quality’

dataset.

What do we propose?
• Model engineering: To engineer a simplified model topology based on causal knowledge.
• Data engineering: To engineer the dataset based on model topology such as to adhere to

causal modelling (i.e. high quality) driven by what data we really require.
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Our task?
• To predict a how a soccer team’s performance evolves between seasons, without taking

individual match instances into consideration.

Academic history
• Previous research focused on predicting the outcomes of individual soccer matches.

Why?
• Good case study to demonstrate the importance of a smart-data approach.
• No other model addresses this question, and which represents an enormous gambling

market in itself (e.g. bettors start placing bets before a soccer season starts).
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Figure 1. Simplified model topology of the overall Bayesian network model.

Where:
• 𝑡1 is the previous season;
• 𝑡2 is the summer break;
• 𝑡3 is the next season

e.g. player injuries,
Involvement in EU
competitions

e.g. player transfers,
Managerial changes, 
team promotion.

i.e. league points 

the actual, and 
unknown, strength 
of the team
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Data engineering:
An example of how player transfers data are restructured

Restructuring the dataset this way, allowed the model
to recognize:

• Relative additional spend: If a team invests
$100m to buy new players for the upcoming
season, then such a team's performance is
expected to improve over the next season. If,
however, every other team also spends $100m
on new players, then any positive effect is
diminished or cancelled.



Data engineering:
An example of how player transfers data are restructured

Restructuring the dataset this way, allowed the model
to recognize:

• Relative additional spend: If a team invests
$100m to buy new players for the upcoming
season, then such a team's performance is
expected to improve over the next season. If,
however, every other team also spends $100m
on new players, then any positive effect is
diminished or cancelled.

• Inflation of salaries and player values: Investing
$100m to buy players during season 2014/15 is
not equivalent to investing $100m to buy players
during season 2000/01. The same applies to the
wage increase of players over the years due to
inflation.
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A few expert variables have been
incorporated into the model and:

• do not influence data-driven
expectations as long as they
remain unobserved, based on the
technique of [1];

• Are not taken into consideration
for predictive validation;

• Are presented as part of a smart-
data approach.

Constantinou, A., Fenton, N., & Neil, M. (2016). Integrating expert knowledge with data in Bayesian networks: Preserving data-driven
expectations when the expert variables remain unobserved. Expert Systems with Applications, 56: 197-208. [draft, DOI]

[1]

http://constantinou.info/downloads/papers/preserveData.pdf
http://www.sciencedirect.com/science/article/pii/S0957417416300896
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technique of [1];

• Are not taken into consideration
for predictive validation;

• Are presented as part of a smart-
data approach.

Constantinou, A., Fenton, N., & Neil, M. (2016). Integrating expert knowledge with data in Bayesian networks: Preserving data-driven
expectations when the expert variables remain unobserved. Expert Systems with Applications, 56: 197-208. [draft, DOI]

[1]

Based on the assumption the statistical outcomes are
already influenced by the causes an expert might
identify as variables missing from the dataset.

http://constantinou.info/downloads/papers/preserveData.pdf
http://www.sciencedirect.com/science/article/pii/S0957417416300896


The Bayesian network model:
Component 𝑡1

Normal, or a mixture of Normal
distributions assessing team
performance/strength in terms
of league points.

Continuous distributions are
approximated with the Dynamic
Discretization algorithm [2]
implemented in the AgenaRisk
BN software.

Neil, M., Tailor, M. & Marquez, D. (2007). Inference in hybrid Bayesian networks using dynamic discretization. Statistics and Computing,
17, 219-233.

[2]



The Bayesian network model:
Component 𝑡2



The Bayesian network model:
Component 𝑡2



The Bayesian network model:
Component 𝑡3



The Bayesian network model:
Component 𝑡3



Results

1. No model (NM): predicts the league points a team will accumulate at season
𝑠 + 1 as the number of league points the team accumulated at season 𝑠;

The three basic ‘methods’ considered for comparison



Results

1. No model (NM): predicts the league points a team will accumulate at season
𝑠 + 1 as the number of league points the team accumulated at season 𝑠;

2. Regression 1 (R1): Standard linear regression which predicts the points
accumulated based on the data which was initially collected (i.e. before data
engineering);

The three basic ‘methods’ considered for comparison

𝐿𝑒𝑎𝑔𝑢𝑒 𝑝𝑜𝑖𝑛𝑡𝑠 = 𝑓 𝑖𝑛𝑝𝑢𝑡𝑠



Results

1. No model (NM): predicts the league points a team will accumulate at season
𝑠 + 1 as the number of league points the team accumulated at season 𝑠;

2. Regression 1 (R1): Standard linear regression which predicts the points
accumulated based on the data which was initially collected (i.e. before data
engineering);

3. Regression 2 (R2): Identical to R1, but with financial factors (i.e. team wages
and net transfer spending) considered in relative terms and hence, the
model predicts the change in points between seasons.

The three basic ‘methods’ considered for comparison
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seasons (i.e., 300 cases). The range of league points in the EPL is 0 to 114.
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Results

Model Prediction error Standard error

NM 8.51 ±0.3802

R1 7.27 ±0.7957

R2 7.3 ±0.3301

BN 4.06 ±0.1993

Table 1. Average prediction error, along with standard error, for each model/method in terms of
discrepancy between predicted and observed league points accumulated per team, over the 15
seasons (i.e., 300 cases). The range of league points in the EPL is 0 to 114.



Results

Table 2. Time-series validation for teams which have demonstrated the most significant fluctuations
in team strength, where S is the number of seasons a team participated (out of 15 taken into
consideration), and 𝐸𝑁𝑀, 𝐸𝑅1, 𝐸𝑅2 and 𝐸𝐵𝑁 are the respective prediction errors generated for NM,
R1, R2, and the BN models respectively.

Team S 𝑬𝑵𝑴 𝑬𝑹𝟏 𝑬𝑹𝟐 𝑬𝑩𝑵

Liverpool 15

Newcastle 14

Blackburn 11

West Ham 12

Everton 15

Man City 14

Average -

Error increase 
(points)

-



Results

Table 2. Time-series validation for teams which have demonstrated the most significant fluctuations
in team strength, where S is the number of seasons a team participated (out of 15 taken into
consideration), and 𝐸𝑁𝑀, 𝐸𝑅1, 𝐸𝑅2 and 𝐸𝐵𝑁 are the respective prediction errors generated for NM,
R1, R2, and the BN models respectively.

Team S 𝑬𝑵𝑴 𝑬𝑹𝟏 𝑬𝑹𝟐 𝑬𝑩𝑵

Liverpool 15 11.53

Newcastle 14 11.64

Blackburn 11 11.55

West Ham 12 11.17

Everton 15 9.8

Man City 14 9.43

Average - 10.81

Error increase 
(points)

- 2.3



Results

Table 2. Time-series validation for teams which have demonstrated the most significant fluctuations
in team strength, where S is the number of seasons a team participated (out of 15 taken into
consideration), and 𝐸𝑁𝑀, 𝐸𝑅1, 𝐸𝑅2 and 𝐸𝐵𝑁 are the respective prediction errors generated for NM,
R1, R2, and the BN models respectively.

Team S 𝑬𝑵𝑴 𝑬𝑹𝟏 𝑬𝑹𝟐 𝑬𝑩𝑵

Liverpool 15 11.53 9.24

Newcastle 14 11.64 10.65

Blackburn 11 11.55 6.6

West Ham 12 11.17 7.01

Everton 15 9.8 9.34

Man City 14 9.43 8.41

Average - 10.81 8.73

Error increase 
(points)

- 2.3 1.46



Results

Table 2. Time-series validation for teams which have demonstrated the most significant fluctuations
in team strength, where S is the number of seasons a team participated (out of 15 taken into
consideration), and 𝐸𝑁𝑀, 𝐸𝑅1, 𝐸𝑅2 and 𝐸𝐵𝑁 are the respective prediction errors generated for NM,
R1, R2, and the BN models respectively.

Team S 𝑬𝑵𝑴 𝑬𝑹𝟏 𝑬𝑹𝟐 𝑬𝑩𝑵

Liverpool 15 11.53 9.24 10.67

Newcastle 14 11.64 10.65 9.22

Blackburn 11 11.55 6.6 8.14

West Ham 12 11.17 7.01 8.03

Everton 15 9.8 9.34 9.66

Man City 14 9.43 8.41 7.05

Average - 10.81 8.73 8.69

Error increase 
(points)

- 2.3 1.46 1.39



Results

Table 2. Time-series validation for teams which have demonstrated the most significant fluctuations
in team strength, where S is the number of seasons a team participated (out of 15 taken into
consideration), and 𝐸𝑁𝑀, 𝐸𝑅1, 𝐸𝑅2 and 𝐸𝐵𝑁 are the respective prediction errors generated for NM,
R1, R2, and the BN models respectively.

Team S 𝑬𝑵𝑴 𝑬𝑹𝟏 𝑬𝑹𝟐 𝑬𝑩𝑵

Liverpool 15 11.53 9.24 10.67 5.61

Newcastle 14 11.64 10.65 9.22 4.48

Blackburn 11 11.55 6.6 8.14 3.46

West Ham 12 11.17 7.01 8.03 3.41

Everton 15 9.8 9.34 9.66 3.65

Man City 14 9.43 8.41 7.05 4.64

Average - 10.81 8.73 8.69 4.27

Error increase 
(points)

- 2.3 1.46 1.39 0.21



Results

Table 3: Model factors of interest and their impact on team performance, where P is the 
expected discrepancy in league points accumulated for the average subsequent season.

Factor/s P

P(Net transfer spending…="Much higher"), and 
P(Team wages…="Extreme increase")

+8.49

P(Newly promoted="Yes") +8.34

P(EU competition="No"), and 
P(EU readiness="High")

+5.17

P(Injury level=“High"), and 
P(Squad ability to deal with injuries=“Low”)

-8.31

P(EU competition="Both"), and 
P(EU readiness="No/Low")

-16.52
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1. First study to present a soccer model for time-series forecasting in terms of 
how the strength of soccer teams evolves over adjacent soccer seasons, 
without the need to generate predictions for individual matches.

2. Previously published match-by-match prediction models which fail to account 
for the external factors influencing team strength, are prone to an error of 
8.51 league points accumulated per team between seasons (assuming EPL 
league).

3. Studies which assess the efficiency of the soccer gambling market may find 
the BN model helpful in the sense that it could help in explaining previously 
unexplained fluctuations in gambling market odds.
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Smart-Data

1. Further evidence that seeking ‘bigger’ data is not always the path to follow. The 
model presented in this study is based on just 300 data instances.

2. Standard non-linear statistical regression models, which are still the preferred 
method for real-world prediction in many areas of social and medical sciences, failed 
to achieve predictive accuracy similar to the smart-data BN model.

3. The paper supports the development of a smart-data method which aims to improve 
the quality, as opposed to the quantity, of a dataset driven by model requirements.

4. Attempted to highlight the importance of developing models based on what data we 
really require for inference, rather than based on what (big) data are available.

5. Demonstrated that inferring knowledge from data imposes further challenges and 
requires skills that merge the quantitative as well as the qualitative aspects of data.

6. Invites examination of the impact of a smart-data method on processes of causal 
discovery.



Thank you

This study was part of the “Effective Bayesian Modelling with Knowledge 
Before Data (BAYES-KNOWLEDGE)”, funded by the European Research Council 
(ERC), Grant reference number ERC-2013-AdG339182-BAYES_KNOWLEDGE. 
We also acknowledge Agena Ltd for Bayesian Network software support.

Thank you for listening. 

…any questions?


