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Abstract 

 

Objectives: 1) To develop a rigorous and repeatable method for building effective Bayesian network 

(BN) models for medical decision support from complex, unstructured and incomplete patient 

questionnaires and interviews that inevitably contain examples of repetitive, redundant and 

contradictory responses; 2) To exploit expert knowledge in the BN development since further data 

acquisition is usually not possible; 3) To ensure the BN model can be used for interventional analysis; 

4) To demonstrate why using data alone to learn the model structure and parameters is often 

unsatisfactory even when extensive data is available. 

 

Method: The method is based on applying a range of recent BN developments targeted at helping 

experts build BNs given limited data. While most of the components of the method are based on 

established work, its novelty is that it provides a rigorous consolidated and generalised framework 

that addresses the whole life-cycle of BN model development. The method is based on two original 

and recent validated BN models in forensic psychiatry, known as DSVM-MSS and DSVM-P. 

 

Results: When employed with the same datasets, the DSVM-MSS demonstrated competitive to 

superior predictive performance (AUC scores 0.708 and 0.797) against the state-of-the-art (AUC scores 

ranging from 0.527 to 0.705), and the DSVM-P demonstrated superior predictive performance (cross-

validated AUC score of 0.78) against the state-of-the-art (AUC scores ranging from 0.665 to 0.717). 

More importantly, the resulting models go beyond improving predictive accuracy and into usefulness 

for risk management purposes through intervention, and enhanced decision support in terms of 

answering complex clinical questions that are based on unobserved evidence. 

 

Conclusions: This development process is applicable to any application domain which involves large-

scale decision analysis based on such complex information, rather than based on data with hard facts, 

and in conjunction with the incorporation of expert knowledge for decision support via intervention. 

The novelty extends to challenging the decision scientists to reason about building models based on 

what information is really required for inference, rather than based on what data is available and 

hence, forces decision scientists to use available data in a much smarter way. 

 

Keywords: decision support, expert knowledge, Bayesian networks, belief networks, causal 

intervention, questionnaire data, survey data, mental health, criminology, forensic psychiatry. 
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1 Introduction 

Bayesian networks (BNs) are a well-established graphical 

formalism for encoding the conditional probabilistic 

relationships among uncertain variables of interest. The 

nodes of a BN represent variables and the arcs between 

variables represent causal, influential, or correlated 

relationships. The structure and the relationships in BNs 

can rely on both expert knowledge and relevant 

statistical data, meaning that they are well suited for 

enhanced decision making. 

 Underpinning BNs is Bayesian probability 

inference that provides a way for rational real-world 

reasoning. Any belief about uncertainty of some event A 

is assumed to be provisional upon experience or data 

gained to date. This is what we call the prior probability, 

written P(A). This prior probability is then updated by 

new experience or data B to provide a revised belief 

about the uncertainty of A that we call the posterior 

probability, written P(A|B). The term Bayesian comes 

from Bayes' theorem which is a formula to determine 

P(A|B): 

 

𝑃(𝐴|𝐵) =  
𝑃(𝐵|𝐴) × 𝑃(𝐴)

𝑃(𝐴)
 

 

 Most real-world problems, including typically, 

medical risk assessment problems, involve multiple 

related uncertain variables and data, which are ideally 

represented as BNs. Early attempts to use Bayesian 

analysis in Artificial Intelligence applications to medical 

problems were unsuccessful due to the necessary 

Bayesian inference being, in general, computationally 

intractable [1]. However, the development of efficient BN 

inference propagation algorithms that work for large 

classes of practical BNs [2-4], along with advances in 

computational power over the last couple of decades, has 

caused a renewed interest in Bayesian probability for 

decision support. This has led to an enormous number of 

BN applications in a wide range of real-world problems 

[5] including, of course, medicine [6-9]. BNs are now 

being recognised as a powerful tool for risk analysis and 

decision support in real-world problems. 

 However, despite their demonstrable benefits, 

BNs still remain under-exploited, partly because there 

are no proven repeatable methods for their development 

when the development process requires the 

incorporation of expert knowledge due to limited or 

inappropriate data for inference. The problem is 

especially challenging when the only data available 

comes from poorly structured questionnaires and 

interviews involving answers to hundreds of relevant 

questions, but including inevitably examples of 

repetitive, redundant and contradictory responses. This 

is what we define as 'complex' data.  

 The objective of this paper is to propose a 

generic, repeatable, method for developing BNs by 

exploiting expert judgment and typically complex data 

that is common in medical problems. The method is 

specifically targeted to deal with the extremely common 

scenario, whereby the existing data cannot be extended 

except for the incorporation of expert knowledge. So 

there is no possibility of requesting data for either 

additional samples or additional variables. Essentially, 

we have to make the most of what we are given. 

 The method is derived from two case studies 

from the domain of forensic psychiatry. Specifically: 

 

1. DSVM-P (”Decision Support Violence Management – 

Prisoners”): a BN model for risk assessment and risk 

management of violent reoffending in released 

prisoners, many of whom suffer from mental health 

problems with serious background of violence [10]; 

 

2. DSVM-MSS (”Decision Support Violence Management - 

Medium Security Services”): a BN model for violence 

risk analysis in patients discharged from medium 

security services [11]. 

 

Previously established predictive models in this 

area of research are either regression based or rule-based 

predictors, but their performance is poor and more 

importantly, they are incapable of simulating complex 

medical reasoning under uncertainty [10].  Hence, it was 

felt that BN models could improve on the state-of-the-art.  

The two BN models were developed in 

collaboration with domain experts and the designers of 

the questionnaires. Both models demonstrated improved 

forecasting capability and enhanced usefulness for 

decision support (as we demonstrate in Section 9 and 

discuss in Sections 10 and 11) relative to the previous 

state-of-the-art models in this area of research.  

 However, in both cases we had to overcome the 

challenge of relying on patient data that had been 

collected before the use of BNs had been considered. As 

is typical with medical domain data much of it was 

’complex’, in the sense described above, coming from 

questionnaires and interviews with patients. The method 

described in this paper for developing BN models based 

on such existing complex data is an attempt to generalise 

what we did and learned in these forensic psychiatry 

applications.  

 While most of the components of the method are 

based on established work, its novelty is as follows: 
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1. Provides a rigorous consolidated and generalised 

framework that addresses the whole life-cycle of BN 

model development for any application domain 

where there is constrained and complex data. 

Specifically where the problem involves decision 

analysis based on complex information retrieved 

from questionnaire and interview data, rather than 

based on data with hard facts, and in conjunction 

with the incorporation of expert knowledge. 

 

2. Its starting point is an approach to problem framing 

that challenges decision scientists to reason about 

building models based on what information is really 

required for inference, rather than based on what 

data is available – even while it is assumed no new 

data can be provided. In other words, it forces 

decision scientists to use available data in a much 

smarter way.   

 

The questionnaire and interviewing data, and the 

problems with learning from them, are discussed in 

Section 2 along with relevant literature review and a brief 

overview of the proposed method. Sections 3 to 8 

describe the following respective steps of the method: 

Determine model objectives, Bayesian Network structure, Data 

Management, Parameter Learning, Interventional Modelling, 

and Structural Validation. Drawing on the case study 

results demonstrated in Section 9, we discuss the benefits 

and limitations of the method in Section 10, we provide a 

general discussion about the method and future research 

in Section 11, and we provide our concluding remarks in 

Section 12. 

 

 

2 The data and its problems 

As is typical for most medical BN building projects, in 

the forensic psychiatry studies we were presented with a 

set of unstructured patient data from questionnaires and 

interviews that had been collected independently of the 

requirements of a BN model. The questionnaires were 

large and complex and the data extracted from them was 

combined with other relevant patient data, such as 

criminal records, retrieved by the Police National 

Computer.  

The questionnaire data includes patient 

responses to questions over the course of an interview 

with a specialist. They also include assessment data 

based on certain check-lists formulated by specialists, 

and which are taken into consideration for evaluating 

certain psychological and psychiatric aspects of the 

individual under assessment. The responses can take any 

form, from binary scale (such as Yes/No) and ordinal 

scale (such as Very low to Very high), to highly 

complicated multiple choice answers (with one or more 

possible selections), numerical answers (e.g. salary, 

number of friends), as well as free-from answers. 

 For example, in the DSVM-P study individuals 

were asked to complete up to 939 questions. All of the 

responses are coded in a database, and each response is 

represented by a variable. Since many of those questions 

were based on multiple choice answers (with up to 

approximately 20 choices), and with more than one 

answer being selected in most of the cases, the resulting 

database included a number of responses that was a 

multiple of the number of questions. As a result, there 

were thousands of variables in the relevant databases, 

excluding the data from criminal records retrieved by the 

Police National Computer. In the DSVM-MSS study, 

which was based on less extensive questionnaires, the 

total number of data variables was still well over 1,000. 

 Yet, despite the large number of variables, the 

databases in both studies had relatively small sample 

sizes (953 and 386 samples respectively for DSVM-P and 

DSVM-MSS) - again something that is very typical of 

many such studies. This makes them a poor starting 

point for developing effective BNs for decision-support 

and risk assessment, which normally require a very high 

ratio of samples to variables and/or substantial expert 

knowledge. This point is increasingly widely 

understood; we do not restrict the complexity of the 

model simply because we have limited or poor quality 

data [12, 13]. BN applications which incorporate expert 

knowledge along with relevant statistical data have 

demonstrated significant improvements over models that 

rely only on what data is available; specifically in real-

world applications requiring decision support [5, 14-18].  

 There have been limited previous attempts to 

develop BN models from questionnaire, interviewing or 

survey data: 

 

1. Blodgett and Anderson [19] developed a BN model 

to analyse consumer complaints and concluded that 

the Bayesian framework offered rich and descriptive 

overview of the broader complaining behaviour 

process by providing insights into the determinants 

and subsequent behavioural outcomes, such as 

negative and positive word-of-mouth behaviour.  

 

2. Sebastiani and Ramoni [20] developed a BN to 

analyse a dataset extracted from the British general 

household survey. The authors commented on the 

limitation of having to discretise all the data since 

continuous distributions were not supported by BN 

software at that time. 
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3. Ronald et al. [21] found the following advantages of  

BNs (compared to more traditional statistical 

techniques) in analysing key linkages of the service-

profit chain within the context of transportation 

service satisfaction: a) can provide causal explanation 

using observable variables within a single 

multivariate model, b) analyse nonlinear 

relationships contained in ordinal measurements, c) 

accommodate branching patterns that occur in data 

collection, and d) provide the ability to conduct 

probabilistic inference for prediction and diagnostics 

with an output metric that can be understood by 

managers and academics.  

 

4. Salini and Kenett [22] examined BNs in analysing 

customer satisfaction from survey data with the 

intention of demonstrating the advantages of BNs in 

dealing with this type of data on the basis that "BNs 

have been rarely used so far in analyzing customer 

satisfaction data" [22]. 

 

5. Ishino [23] described a method of extracting 

knowledge from questionnaires for marketing 

purposes by performing BN modelling. This method 

was said to be a) capable of treating multiple 

objective variables in one model, b) handling 

nonlinear covariation between variables, and c) 

solving feature selection problems using Cramer's 

coefficient of association as an indicator [23]; though 

the benefits of (1) and (2) come as a result of using 

the BN framework. 

 

 With the exception of Ishino [23] the main focus 

of these previous studies were on the results and benefits 

of the developed BNs, rather than on the method of 

development. Moreover, all applications involved data 

from surveys and questionnaires for marketing and 

customer satisfaction purposes - generally a less complex 

application domain than medical. While Ishino [23], did 

focus on a method, it involved minimal expert input. Our 

focus is on a method for moving from the poorly 

structured, complex, but limited, data to an effective 

expert constructed BN model. Hence, we believe this is 

the first attempt to provide a whole-life cycle process for 

developing and validating BN models based on complex 

data and expert judgment. 

 The method is divided into six key component 

steps, as demonstrated by the iterative development 

process in Figure 1.   

 The following sections, from Section 3 to Section 

8, describe respectively the six steps. Throughout, we 

illustrate each step with examples from the two case 

studies and discuss the challenges for each development 

step in detail. 
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Figure 1. The proposed expert Bayesian network development process on the basis of learning from questionnaire interviewing data. 
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3 Model objectives 

The starting point of the method is the Model 

Objectives component. Although the availability of some 

existing patient/medical database is often the motivation 

to develop a BN (“we have this really great/important data – 

we think you should be able to use it to build a BN model to 

support decision making for problem X…”) it should never 

be the real starting point. This is true even in the scenario 

(which is the one we are assuming) whereby the 

available data cannot be extended except by expert 

knowledge. Instead, irrespective of whatever existing 

data is available (and certainly before even considering 

doing any kind of statistical analysis) the first step 

involves determining what the actual objective of the 

model is. For example, the following are very different 

classes of objectives for BN models: 

 

1. Risk assessment: Determine the most likely current 

state of a variable (that is typically not directly 

observable). For example, “to determine from all the 

available information, the probability that a given person 

has disease X” or “to determine if new drug D is safe to 

use”. 

 

2. Risk Management: Determine the most likely outcome 

of some core variable for a given intervention action. 

For example, “What is the probability a patient’s 

condition with respect to disease X will improve if given 

treatment T”. 

 

 In the DSVM-P study the initial core objective 

was to determine if it is safe to release a given prisoner 

by assessing the prisoner's risk of violent reoffending in 

the case of release. Similarly, the core objective for the 

DSVM-MSS study was to determine if it is safe to 

discharge a given mentally ill patient by assessing the 

patient's risk of violence in the case of discharge. Both of 

these objectives represent a risk assessment process. But in 

both case studies, the objectives are expanded to risk 

management in the sense that the risk of violence for a 

given individual can be managed to acceptable levels 

after release/discharge by considering a number of 

relevant interventions (see Section 7).  

Only when the objective is determined, can we 

specify what information we ideally require for carrying it 

out. Interviews with one or more domain experts are 

typically required in order to identify all of the important 

variables required to meet the core objective for the BN 

model. For our two BN applications, the domain experts 

were two clinical active experts in forensic psychiatry 

(Prof. Jeremy Coid) and forensic psychology (Dr. Mark 

Freestone) [10, 11]. In each case approximately five to 

seven meetings lasting between 1-2 hours with the 

domain experts were required at this stage in order to 

identify the important model factors (this really depends 

on domain complexity). In both studies, at least 75% of 

the model factors were identified at this initial stage.  

The subsequent component of our proposed 

method is concerned with constructing a Bayesian 

network structure, in collaboration with domain experts, 

by considering the information that we really need to 

model. 

  

  

4 Bayesian network structure 

Assuming we have specified the 'ideal' required 

variables from the model objectives step, we can proceed 

into the most time consuming step of the process: 

constructing the structure of the BN model with expert 

knowledge. While BNs are often used to represent causal 

relationships between variables of interest, an arc from 

variable A to variable B does not necessarily require that 

B is causally dependent on A [13]. The 'ideal' variables 

constitute the initial set of nodes of the BN. Many BNs 

developed for medical real-world applications have been 

constructed by expert elicitation [6, 9, 24-28]. 

 We do recognise that expert elicitation requires 

major interdisciplinary collaboration which can be 

complex and time consuming. In the DSVM-P study 75% 

of the model factors had been identified as a result of 

investigating what information we really require to meet 

the model objectives. It is only when the experts are 

involved in the design of the BN structure, and therefore 

start thinking in terms of dependency and/or cause and 

effect between factors, that they are able to identify the 

residual factors that were missed in the previous step.  

 Unlike the previous step, however, in the BN 

structure step the meetings were numerous and long. In 

DSVM-P there were around 20 meetings whose average 

time was approximately three hours. However, since we 

collaborated with the same experts for both case studies, 

the development of the BN structure for the second case 

study DSVM-MSS was approximately three to four times 

shorter than that of DSVM-P. We believe there were two 

reasons for this: 1) the experts had already ‘learned’ 

about both the process and BN models; and 2) there were 

generic similarities between the second and first study. 
  As noted in Figure 1, the BN structure we 

initially construct is likely to be quite different from the 

final version (as a result of subsequent iterations to 

model synthetic and mutually exclusive variables and 

also interventions). However, the conceptual flow of the 

network is likely to remain unchanged. Figures 2, 5 and 8 

from respective Sections 5.2, 5.4 and 7 demonstrate how 
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fragments of the BN model have been altered over the 

process as a result of introducing synthetic, mutual 

exclusive and interventional nodes in the BNs. The final 

versions of the two BNs are provided in Appendix A; 

Figures A1 and A2. The next component of our proposed 

method is concerned with mapping the data we actually 

have into the closest possible match to what we ideally 

need. 

 

 

5 Data management 

The primary objective of the data management task is to 

link actual data variables to model nodes. Because of the 

complexity of the data from questionnaires and 

interviews as described in Section 2, this is extremely 

challenging. Generally, there is no single data variable 

corresponding to an ideal' model variable. Typically 

there are multiple related data variables provided for 

similar questions. The challenge here mainly involves 

combining all these similar responses (which in some 

cases can also be inconsistent) into a single piece of 

information in an attempt to inform the relevant model 

node. These challenges are discussed in the following 

sub-subsections. 

 

5.1. Composite data variables 

The most common problem involves the need for a single 

variable which, although not in the data, has multiple 

associated variables. For example, in the DSVM-P study 

we had the following model nodes: 

 

1. Financial difficulties: While there was no such variable 

in the available questionnaire data there was 

sufficient information to learn an approximate 

surrogate variable. Specifically, the sources of such 

relevant information are answers provided to 

questions such as "Are you behind paying bills?", 

"Have you recently had any services cut off?", and "What 

is your average weekly income".  

 

2. Problematic life events: This was assessed on the basis 

of responses to questions such as "Separation due to 

marital difficulties, divorce or break down of steady 

relationship", "Serious problem with a close friend, 

neighbour or relative", and "Being made redundant or 

sacked from your job".  

 

 For both of these examples there were several 

more relevant sources of information that could have 

been considered to learn the specific model variables, 

and this was the case with many other model factors. As 

a result, problems arise in determining which data 

variable to choose for the particular node. Focusing on 

just one data variable is not expected to be the best 

approach since, in doing so, other relevant and important 

information will most likely be ignored.  

 A solution under these expert-driven 

circumstances is to formulate some combinational rule, 

or a set of combinational rules, for all the important data 

variables. We have worked with clinicians (psychiatrists 

and clinical psychologists) as well as the designers of the 

questionnaires themselves to retrieve the inferences we 

were interested in [10, 11]. Examples of combinational 

rules between the different sources of similar information 

are: 

 

1. an OR relationship - i.e. Financial difficulties="Yes" if at 

least one data variable satisfies this statement, 

 

2. an AND relationship - i.e. Financial difficulties="Yes" if 

all the relevant data variables satisfy this statement, 

 

3. a relative counter - i.e. Financial difficulties="Yes" if at 

least X out of Y data variables satisfy this statement, 

 

4. a ranked average - i.e. Financial difficulties="Very high" 

if the majority of the data variables indicate severe 

financial difficulties, 

 

5. a weighted ranked average - i.e. Financial 

difficulties="Very high" if the key data variables 

indicate severe financial difficulties. 

 

Although many other combinational rules are possible, 

the five above should be enough to deal with the vast 

majority of these scenarios.  

One class of cases, however, is especially 

problematic, namely where the data actually comprises 

records of expert knowledge. For instance, some records 

may reflect the clinician’s assessment as to whether the 

individual suffers from a particular type of mental 

illness, or in identifying a certain type of behavioural 

attitude by interviewing the individual. In such 

situations we found it impractical to derive a clear-cut 

method of determining which combinational rules to use 

and when because the questionnaire and interviewing 

data was far too complex and uncertain. As a result, in 

these situations we required expert judgements to 

determine the necessary data sources and combinational 

rules. 
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5.2. Synthetic BN nodes 

Although many relations in a BN can be causal, one of 

the most commonly occurring class of BN fragments is 

not causal at all. The definitional/synthesis idiom models 

this class of BN fragments.  

 A synthetic node is one which is simply defined 

by the values of its parent nodes, as demonstrated in 

Figure 2 (from the DSVM-MSS model), using some 

expert-driven combinational rule. Synthetic nodes can be 

extremely useful for:  

 

1. reducing model dimensionality and the effects of 

combinatorial explosion, and  

 

2. improving the overall BN structure of the model 

in terms of dependent/influential relationships.  

 

In the case of (1), this vastly increases computational 

speed of the model and, crucially, reduces the size of the 

CPTs whose entries (i.e. parameters) have to be learned 

from data or elicited from experts (see Section 6). In the 

case of (2), while the synthetic nodes are not causally 

related to their parents (e.g. uncontrolled aggression 

summarises Aggression and Self-control), the network 

fragments themselves can help in constructing a BN 

model with more natural and dependency/influential 

relationships at the conceptual level (see Figure 2).  

 In the DSVM-MSS study the experts had initially 

suggested the eight specified variables with direct links 

to violence (Figure 2; top network) and this generated 

1152 state combinations for the CPT of node Violence. 

This is clearly a problematic scenario, given that the 

sample size was just 386. Reconstructing this part of the 

network with the expertly defined synthetic nodes 

(Figure 2; bottom network) not only reduced the number 

of state permutations for the CPT of node Violence by 

~97% (i.e. down to 24), but also improved the conditional 

relationship between factors for violence risk analysis. 

Further, Table 1 presents, as an example, the CPT for the 

expertly defined synthetic node 'Uncontrolled aggression' 

introduced in the DSVM-MSS study. The expert 

reasoning is that if an individual does not have self-

control then we cannot expect the individual to be able to 

control his or her aggression, in the case of 

Aggression=Yes, and vice versa. 

 

 
 

Figure 2. How the BN is revised after introducing synthetic nodes [11]. 

 
 

Table 1. Expertly defined CPT for synthetic node Uncontrolled 

Aggression. 

 

Self-control No Yes 

Aggression No Partly Yes No Partly Yes 

Low 1 0 0 1 0 0 

High controlled 0 0 0 0 1 1 

High uncontrolled 0 1 1 0 0 0 

 
 

5.3. Managing the number of states of the BN nodes 

Although many variables in the dataset are typically 

binary (i.e. Yes/No, True/False, High/Low), some have 

multiple states and some are continuous. For example, in 

the DSVM-P study we have 79 categorical nodes with the 

number of states ranging from two to nine, and nine 

continuous distribution nodes (four different types); 

whereas in the DSVM-MSS study we have 80 categorical 

nodes with the number of states ranging from two to 

eight. 



Accepted for publication in Artificial Intelligence in Medicine. Draft v20.1, March 18, 2016. 

 

10 

 

 If we are learning the prior probabilities of the 

states from the data alone we need to ensure there not 

too many states relative to the sample size. If there are 

the learned probabilities will suffer from high variability, 

which typically results in model overfitting; i.e. leading to 

a model that performs well on the training data but 

poorly on unseen data. This happens when the model 

has not learned to generalise from trend. Depending on 

the parent nodes, sometimes even three states will be too 

many, while some variables may have up to 10+ states. 

Under such circumstances, some sensible re-

categorisation of states must be performed in order to 

reduce the number of states for such variables. 

Figure 3 illustrates a case from the DSVM-P 

study whereby we had to convert a Gaussian distribution 

of IQ scores into a categorical distribution consisting of 

six ordinal states. A quick look at the prior marginal 

probabilities of the categorical distribution, which appear 

to be normally distributed over the six states, as captured 

from data, provides us with confidence the size of data 

was sufficient for a reasonably well informed prior. 

Conversely, for the DSVM-MSS study the limited data 

restricted the number of states of the IQ node to just 

three. Appendix B, Table B.1 provides all the variables, 

from both models that have been downgraded in terms 

complexity in order to reduce the risk of model overfitting 

as a result of limited data. 

 

 
 

Figure 3. Converting a Gaussian distribution into a categorical 

distribution, as captured from data, with ordinal states. Note that the 

average IQ of the individuals in the study was below average. 

 

When the states of the variable are known to 

follow an ordinal scale distribution, but the dataset is not 

sufficiently large to capture the normality as accurate as 

that of Figure 3, other approaches can be considered such 

as Ranked nodes in BNs which are ordinal categorical 

distributions generated on the basis of Truncated Gaussian 

distributions [29]. Figure 4 demonstrates how the same 

Gaussian distribution from Figure 3 can be converted into 

a Ranked distribution of the same six states by 

normalising the mean and variance into a truncated 

version with lower and upper boundaries set to 0 and 1 

respectively; effectively a TruncatedGaussian[0,1] 

distribution as proposed by [29]. 

 

 
 
Figure 4. Converting a Gaussian distribution into a Ranked distribution 

based on the mean and variance of the Gaussian distribution, as 

proposed by Fenton et al. [29]. 

 

 Properly managing the type of nodes (i.e. 

categorical/continuous), the number of node states, and 

the type of states (i.e. nominal/ordinal), can dramatically 

help in increasing computational speed while 

concurrently improving the model's predictive accuracy.  

 

5.4. Mutual exclusivity 

Datasets resulting from questionnaires and interviews 

will likely incorporate multiple variables that are 

mutually exclusive. Such variables can usually be more 

simply modelled in a BN as the set of states of another 

single generalised variable (by definition such states are 

mutually exclusive). 

  

 

 
 

Figure 5. Collapsing mutual exclusive data variables into a single 

generalised node with mutual exclusive states. 

  

An example of this common phenomena arising 

in the DSVM-P study is shown in Figure 5. Here there is 

a set of seven mutually exclusive Boolean variables in the 
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dataset (there were many more but the experts identified 

these seven to be sufficient and the most important); they 

can be collapsed into a single generalised categorical 

node. This assumes that all of the mutual exclusive 

variables share identical parent and child nodes, and are 

therefore not required to be modelled as distinct nodes 

[30]. Properly managing mutual exclusivity reduces 

model complexity, makes parameter learning and 

elicitation simpler, and increases computational speed. 

 

 

6 Parameter learning 

Parameter learning is the process of determining the CPT 

entries for each node of the agreed BN model. It is 

expected to be performed once the model structure is 

stable and all of the data management issues have been 

satisfactorily addressed  

 Because of the limitations of the real-world data, 

even allowing for the methods described in Section 5, 

there will generally be nodes or individual parameter 

values, for which no relevant data is available. For these 

cases, we chose to elicit the probability values from the 

domain experts (in the DSVM-P study four out of 89 of 

the  nodes required expert elicitation, while in the 

DSVM-MSS study it was six out of 80 such nodes). We 

address this process in Section 6.1. Alternatively, there 

are data-driven techniques which could be considered 

for finding reasonable assignments to missing variables, 

and this is covered in Section 6.2 where we describe the 

method for learning the CPTs from data. 

 

6.1. Expert-driven learning 

Various expert-driven probability elicitation methods 

have been proposed. However, most of them are similar 

and rather simple as they tend to propose some sort of 

probability scale with verbal and/or numerical anchors, 

as well as focusing on speeding up the elicitation process 

as it can sometimes be a daunting task [27, 31-33]. 

 The expert-driven probability elicitation process 

we considered for both case studies was similar to those 

referred above, using verbal representations for 

probability scale such as from Very low (i.e. 0 to 0.2) to 

Very high (i.e. 0.8 to 1). We also endeavoured to keep the 

questions put to experts as simple as possible; at no point 

were the expert asked to combine multiple pieces of 

uncertain information in their head in order to arrive at a 

conclusion.  

 We ensured that domain experts would only be 

required to answer straightforward questions such as: 

"How strong is the influence between A and B?", or "how high 

is the risk of treatment Y causing a side-effect?". We also 

found helpful the following studies [5, 34-37] which, in 

addition to providing further recommendations on 

eliciting expert probabilities, also provide guidelines on 

how to minimise bias during the elicitation process. 

 

6.2. Data-driven learning 

Unfortunately, in both our studies the vast majority of 

the data-driven variables had missing data. The only 

data-driven nodes with complete data were those based 

on criminal data provided by the Police National 

Computer (e.g. Age, Gender, Number of violent convictions). 

This is typical of real-world data in medical domains 

where it is generally accepted that patient data collected 

during the course of clinical care will inevitably suffer 

from missing data [38].  

In dealing with datasets which include missing 

data, decision scientists typically have three options [39]:  

 

1. Restrict parameter learning only to cases with complete 

data: For the reasons explained above this is not a 

viable option for typical medical studies. 

 

2. Use imputation-based approaches: In these missing 

values are filled with the most probable value, based 

on the values of known cases, and then the CPTs are 

learned normally as if they were considering a full 

dataset. There are multiple imputation methods; for 

example, the imputed value can be chosen based on 

the mean predicted value when considering all of the 

other know values, or a subset of them, or even 

based on regression procedures [40]. 

 

3. Use likelihood-based approaches: In these the missing 

values are inferred from existing model and data (i.e. 

the model attempts to infer the likelihood of missing 

values that make the observed data most likely). The 

Expected Maximisation (EM) algorithm, which is an 

iterative method for approximating the values of 

missing data [41], is commonly used for this 

purpose, and is widely accepted as the standard 

approach for dealing with missing data in BNs. 

 

 In both studies we chose option (3) and the EM 

algorithm to learn the CPTs of variables which are based 

on data with missing values. Specifically, the EM 

algorithm is based on forming the conditional 

expectation of the log-likelihood function for completed 

data given the observed data as defined in [41]: 

 
𝑄(𝜃′|𝜃) = 𝐸𝜃{𝑙𝑜𝑔 𝑓(𝑋|𝜃′)|𝑦}, 
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where X is the random variable which corresponds to the 

complete data, which is unobserved, with density f, and 

𝑦 = 𝑔(𝑥)  is the observed data. The log-likelihood 

function for the complete data is a linear function of the 

set of sufficient marginals: 

 
𝑛(𝑖𝑎), 𝑎 Є 𝐴, 𝑖𝑎  Є 𝐼𝑎 . 

 

The EM algorithm searches for the Maximum Likelihood 

Estimate (MLE) of the marginal likelihood by iteratively 

applying the following two steps: 

 

1. Expectation (E) step. This calculates the expected 

value of the log-likelihood function and which is 

equivalent to calculating the expected marginal 

counts: 

 

 𝑛∗(𝑖𝑎) = 𝐸𝑝{𝑁(𝑖𝑎)|observed data}; 

 

2. Maximisation (M) step.  This solves: 

 
𝑛(𝑖𝑎) = 𝑛∗(𝑖𝑎),      𝑎 Є 𝐴, 𝑖𝑎  Є 𝐼𝑎 , 

 

for p which, assuming the expected counts were 

the true counts, maximises the likelihood 

function. 

 

For this task, we have made use of the EM learning 

engine offered by the freely available GeNIe [42]. This is 

because GeNIe offers the two following important 

features during the learning process: 

 

1. Fixed nodes: During the parameter learning process, 

expert-driven variables must be indicated as Fixed 

nodes in order to retain their prior probabilities as 

suggested by the experts; assuming that no data exist 

for these variables that will allow EM algorithm to 

generate meaningful inferences (see Figure 6 for an 

example); 

 

2. Confidence: If the EM algorithm is used to revise a 

previously learned model with a new (additional) 

relevant dataset, then a level of confidence should be 

assigned to the prior probabilities of the input model. 

The confidence expresses the level of certainty in the 

parameters assigned to the local probability 

distributions in the input model. Specifically, it 

represents the number of cases/records the original 

parameters are based on. 

 

 
 

Figure 6. A small BN fragment from the DSVM-MSS indicating the 

CPTs of expert-driven synthetic variables are preserved after 

performing parameter learning with EM algorithm. 

 
 
7 Interventional modelling 

Just like other probabilistic models, a BN model can be 

used to inform how probabilities for uncertain events are 

expected to change (e.g. for the purposes of risk 

assessment) based on a number of other relevant events 

that are known within that model. The causal 

framework, which represents both BNs as well as 

Influence Diagrams (IDs), makes these models particularly 

suitable in informing how the probabilities would also 

change as a result of some intervention (i.e. for the 

purposes of risk management).  

 IDs have traditionally been the preferred type of 

probabilistic graphical model for decision support 

problems since, unlike BNs, they allowed the user to 

incorporate decision as well as utility nodes, in additional 

to chance nodes, for solving decision problems. More 

specifically, while a chance node represents a random 

variable, a decision node represents the options that are 

available to the decision maker, whereas utility nodes 

represent the decision maker's preferences [43]. 

However, recent work on interventions (discussed 

below) allows the decision maker to model decisions or 

actions in the form of an intervention in BNs, and 

determine their value based on their influence against 

some desired output variable, which can be anything 

from a Boolean variable to a continuous distribution.

 Previous work mainly focuses on perfect 

interventions; i.e. when the effect variable is set to a 

single state following the intervention [13, 44-46]. The 

process of intervening on an event that is rendered 

independent of all its causes is known as graph surgery 

[13].
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Figure 7. The three basic DAG models with examples of observations, which are represented by the nodes set to True, and interventions, which are 

represented by squared nodes [46]. 

 

Hagmayer et al [46] illustrate this concept on the 

three basic directed acyclic graph (DAG) models 

presented in Figure 7, where: 

 

1. Common cause: 𝑃(𝑋, 𝑌, 𝑍) = 𝑃(𝑌|𝑋) 𝑃(𝑍|𝑋) 𝑃(𝑋); 

 

2. Causal chain: 𝑃(𝑋, 𝑌, 𝑍) = 𝑃(𝑍|𝑌) 𝑃(𝑌|𝑋) 𝑃(𝑋); 

 

3. Common effect: 𝑃(𝑋, 𝑌, 𝑍) = 𝑃(𝑍|𝑌, 𝑋) 𝑃(𝑌) 𝑃(𝑋); 

 

Figure 7 illustrates the concept of graph surgery when it 

comes to perfect interventions by demonstrating how the 

links between variables are removed when modelling an 

intervention, represented by square nodes in bottom 

models, rather than an observation (i.e. top models). For 

a more detailed description see [13]. 

 In medical informatics, however, an intervention 

is typically represented by some sort of treatment, 

therapy or medication, and is typically used to answer 

questions such as: "If a patient receives treatment X, what 

are the chances of him getting well?". This would represent 

an imperfect intervention; implying that the intervention 

induces a distribution over states rather than a specific 

state [47, 48]. Our focus is on this more complex type of 

intervention. 

 By definition, the effectiveness of an imperfect 

intervention depends on some other factors. We 

identified two such factors in our case studies: 

 

1. the individual's motivation for treatment, and 

 

2. the individual's responsiveness to treatment. 

 

The purpose of these two additional factors is to 

influence the effectiveness of any relevant imperfect 

intervention. These additional factors are described as 

switch nodes in [48]. 

 Figure 8 presents an example, based on the 

DSVM-MSS study, of how an observational BN model is 

expected to transform into an interventional BN model in 

order to allow execution of imperfect interventions. We 

will discuss these two steps in turn: 

 

1. Observational model: When learning the CPTs of the 

model parameters, no interventions are taken into 

consideration. At this phase, the 'Treatment for anger' 

is simply an observation; e.g. what is the probability 

that the doctor will propose treatment for anger, 

given anger.  

 

2. Interventional model: When the model is used for 

intervention we alter the original model by removing 

any arcs entering the desired interventions (i.e. arcs 

with an X in Figure 8). The dependency links are 

removed because in this scenario we do not want to 

explain the observation for treatment, but rather to 

estimate its impact as an intervention; hence, we 

must not reason backwards diagnostically.  

This example also demonstrates that it is possible 

for the intervention to serve as the child node of the 

relevant symptom in observational models, but this 

link should be reversed (if not removed) in the 

interventional model. Specifically, while in the 

observational model we expected evidence of Anger 

to increase the chance for a doctor to propose 

Treatment for anger, in the interventional model we 
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would expect Treatment for anger to reduce symptoms 

of Anger.  

 Further, the switch nodes in this example are 

Motivation to attend treatment and Responsiveness to 

treatment. As a result, both of these factors influence 

Anger post-treatment in the interventional phase since 

the effectiveness of Treatment for anger is dependent 

upon them. 

 

 

 
 

Figure 8. An example of how an observational BN model transforms 

into an interventional BN model, on the basis of imperfect 

interventions. Dashed nodes and dashed arcs are introduced in the 

interventional phase. 

 

 In both of our studies, there was data providing 

follow-up information about the patients/prisoners for 

up to five years post-discharge/release. This provided us 

with information about the effectiveness of the relevant 

treatments and therapies and allowed us to estimate the 

effect of interventional actions from data. Fortunately, 

even when no such data is available, BNs will allow us to 

formulate interventions and define their impact based on 

expert knowledge. 

 For a more detailed discussion, including some 

real-world experiments, on the distinction between 

observational and interventional probabilistic relations 

see [46]. Further, with imperfect information models it is 

possible to have more than one intervention 

manipulating the same symptom. The model presented 

in Figure 8 allows for such multiple interventions. This 

process has also been described as fat hand intervention 

model [48]. 
 

 

8 Structural validation 

In terms of validating the structure of the BN model, 

apart from predictive accuracy, we found sensitivity 

analysis (SA) to be particularly useful. SA is a simple, yet 

powerful, technique for examining the impact of 

specified model factors against a desired targeted factor 

within the same model. This is achieved by recalculating 

the outcomes of the targeted factor under alternative 

assumptions. It is possible to see diagrammatically which 

nodes, and under what states, have the greatest impact 

on any selected target node as we subsequently show in 

Figure 9. We used the freely available AgenaRisk 

software for the sensitivity analysis since this process is 

fully automated in that package [49]. 

SA can serve as an extremely useful tool for 

rapidly evaluating:  

 

1. The structure and the CPTs of the BN: The sensitivity 

results depend on the structure of the model and 

hence, the overall robustness of a BN model can be 

swiftly assessed with domain experts, in an attempt 

to identify possible irrationalities for both the BN 

structure and the underlying CPTs [50, 51]; 

 

2. Interventional structure and effectiveness: The 

sensitivity results also depend on which set of model 

factors are instantiated (different sets of node 

instantiations will normally lead to different 

sensitivity scores). Consequently, we can also use SA 

to validate interventional structure with domain 

experts and to assess the effectiveness of each 

intervention. 

 

Furthermore, the validation that SA can provide 

extends to risk management assessment of individual 

scenarios. For instance, and based on our application 

domain, SA can be used with a set of observations that 

represent a patient's profile, in order to assess potential 

revisions with regards to the risk of violence and on the 
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basis of some intervention. As an example, Figure 9 

presents the tornado graph 1  generated for risk 

management purposes, based on a prisoner’s profile 

from our case studies. The effectiveness of the three 

specified interventions is assessed against the prisoner's 

profile, and which indicates that the individual: 

 

1. suffers from mental illness,  

2. is drug dependent, 

3. is alcohol dependent,  

4. is partly impulsive, 

5. has no violent thoughts, 

6. is motivated to attend treatments, 

7. is responsive to  treatments and therapies 

 

For instance, the graph indicates that if we set Psychiatric 

treatment (P) to "No", we get p(Violence=Yes)=0.661, 

whereas if we enable this particular intervention the 

respective risk of violence drops down to 0.5342.  
 

 

 
 

Figure 9. Sensitivity analysis for the three specified interventions, on 

the risk of observing violence over a specified time post-release, based 

on a made-up profile of an individual (discussed in text); where P is 

Psychotic treatment, A is Alcohol treatment, and D is Drug treatment. 
 
 

9 Results from validation and predictive accuracy 

The accuracy of the two BN models was validated on the 

basis of cross-validation and with respect to whether a 

prisoner/patient is determined suitable for 

                                                           
1 The graph is generated using the AgenaRisk BN simulator [49]. 

 
2 SA assumes that residual interventions remain uncertain. It requires 

that the factors provided as an input for SA are uncertain. For a more 

accurate assessment for each individual intervention, SA should be 

performed only based on a single intervention (with the residual 

interventions disabled). However, SA is not capable of examining the 

effectiveness of interventions when they are combined (i.e. when more 

than one intervention is active). To achieve this, the decision maker 

must manually perform this observations in the network and record the 

alteration of probabilities on the target variable. In [62] we demonstrate 

how the underlying principle of Value of Information can enhance 

decision analysis in uncertain BNs with multiple interventions. 

release/discharge, using the area under the curve (AUC) 

of a receiver operating characteristic (ROC) [52]. The 

AUC of ROC was considered simply because, in these 

application domains, it represents the standard method 

for assessing binary predictive distributions. This 

allowed us to perform direct comparisons, in terms of 

AUC scores, against the current state-of-the-art models 

developed for violence risk assessment and prisoners' 

release decision making.  

 The well-established models and predictors for 

which we base our comparisons against are either 

regression-based models, or rule-based techniques with 

no statistical composition. Specifically: 

 

1. HCR20v3 [53] and HCR-20v2 [54]: are Structured 

Professional Judgment (SPJ) assessment tools 

developed based on empirical literature review 

factors that relate to violence. They are used 

primarily by clinicians seeking to assess readiness for 

discharge amongst patients whose mental disorder is 

linked to their offending. A total of 20 Items are 

scored on a three-point scale by clinicians. 

 

2. SAPROF [55]: is 17-item checklist-scale where items 

are scored on the same trichotomous scale as the 

HCR-20. The items are grouped into internal (e.g. 

mental), external (e.g. environmental) and 

motivational (e.g. incentives) factors. 

 

3. PANSS [56]: is a 30-item evaluation scale that focuses 

on measuring the severity of symptoms of mental 

illness. The symptoms are groups into positive (i.e. 

outwardly displayed symptoms associated with 

psychosis), negative (i.e. relating to diminished 

volition and self-care), general (i.e. non-specific 

symptoms) and aggression. 

 

4. VRAG [57]: is a regression-based model based on 12 

variables linked to violence and which correlate best 

with reoffending. 

 

5. PCL-R [58]: is a checklist of 20 variables which 

measure psychopathy, and which are strongly 

related with offending behaviour in prisoner 

populations. 

 

 The DSVM-MSS model was assessed against the 

12 predictors shown in Figures 11 and 12, and in terms of 

both General violence (i.e. minor violent incidences) and 

Violent Convictions (i.e. major violent incidences). The 

DSVM-P model was assessed against three predictors 

shown in Figure 12, and in terms of Violent Convictions. 

Table 2 provides a summary of the results. 
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Table 2. Predictive validation for DSVM-MSS and DSVM-P, based on the AUC of ROC, where '<' represents the number of models for which the 

specified BN model performed significantly inferior, '=' represents the number of models for which no significant differences have been observed in 

predictive accuracy, and '>' represents the number of models for which the specified BN model performed significantly superior. Significant levels 

for DSVM-MSS were set to 0.05, whereas for DSVM-P were set to 0.001. 
 
 

Model Validated outcome Post-discharge 

period 

Validated against 

X models 

< = > 

 

DSVM-MSS 

General violence 

(AUC=0.708) 

 

 

12  

months 

 

 

X=13 

0 10 

(AUCs between 

0.626 and 0.705) 

3 

(AUCs between 

0.549 and 0.622) 

Violent convictions 

(AUC=0.797) 

 

X=13 

0 9 

(AUCs between 

0.622 and 0.685) 

4 

(AUCs between 

0.527 and 0.614) 

DSVM-P 

 

Violent convictions 

(AUC=0.78) 

1816  

days 

 

X=3 

0 0 3  

(AUCs between 

0.665 and 0.717) 

 

 Overall, the DSVM-MSS model demonstrated 

competitive predictive capability, whereas the DSVM-P 

model demonstrated superior predictive capability, 

when compared against the current state-of-the-art 

predictors that are employed with the same dataset. 

More specifically:  

 

1. DSVM-MSS and General Violence: Figure 10 illustrates 

that the AUC score of the DSVM-MSS model 

matches the best scores generated by the thirteen 

predictors specified and, as shown in Table 2, 

significantly outperforms three out of the thirteen 

predictors. Overall, the DSVM-MSS model in this 

case demonstrated competitive performance against 

the current state-of-the-art.  

 

2. DSVM-MSS and Violent Convictions: Figure 11 

illustrates that the AUC score of the DSVM-MSS 

model outperforms all the other scores generated by 

the thirteen predictors specified and, as shown in 

Table 2, significantly outperforms four out of the 

thirteen predictors. Overall, the DSVM-MSS model in 

this case demonstrated competitive to superior 

performance against the current state-of-the-art. 

 

3. DSVM-P and Violent Convictions: Figure 12 illustrates 

that the AUC score of the DSVM-P model 

outperforms all the other scores generated by the 

three predictors specified and, as shown in Table 2, 

significantly outperforms all of the predictors. 

Overall, the DSVM-P model demonstrated superior 

performance against the current state-of-the-art. 

 

 
 

Figure 10. AUC score comparison, in terms of predicting incidences of 

General Violence, between DSVM-MSS and the specified 13 well known 

predictors, when employed with the same dataset. 

 

 
 

Figure 11. AUC score comparison, in terms of predicting incidences of 

Violent Convictions, between DSVM-MSS and the specified 13 well 

known predictors, when employed with the same dataset. 
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Figure 12. AUC score comparison, in terms of predicting incidences of 

Violent Convictions, between DSVM-P and the specified three well 

known predictors, when employed with the same dataset. 

 
 

10 Discussion 

We first summarise the benefits and limitations of the 

method presented in the paper as informed from the two 

case study models. Some of the benefits and limitations 

are clearly quite general in the sense that they apply to a 

wide range of other medical decision support problems.  

The two case study BN models compare favourably 

against the well-established predictors in this area of 

research, which are based on either regression models or 

even some rule-based methods with no statistical 

composition, and which represent the current state-of-

the-art. Specifically, the BN models enhance decision 

support as follows: 

  

1. Improved accuracy: The DSVM-MSS demonstrated 

competitive predictive capability whereas DSVM-P 

demonstrated superior predictive capability, when 

compared to the current state-of-the-art predictors 

that are employed with the same dataset. 

  

2. Interventional analysis: The BN approach allows for 

specific factors to be targeted for intervention for risk 

management purposes. In the case of the two case 

studies, this is done by examining whether the risk of 

future re-offending or violent behaviour can be 

managed to acceptable levels as a result of some 

intervention (e.g. treatment/therapy), and this makes 

the model useful in terms of answering complex 

clinical questions that are based on unobserved 

evidence. 

 

3. Inverse inference: Contrary to the current state-of-

the-art predictors, the BN framework allows for 

inference to be performed from both cause to effect 

and vice versa. This unique capability, also known as 

explaining away, can be used in the case study models 

by professionals to examine the reasons as to why a 

particular individual reoffended when the model 

may have been suggesting otherwise. 

 

4. Handles missing evidence: Consider a prisoner 

and/or a mental health patient who does not respond 

to all of the questionnaire/interviewing questions. 

While current predictors only consider what 

information is available for prediction, the BN 

models allow flexibility with model inputs due to the 

BN framework; implying that missing inputs are not 

ignored simply because relevant evidence are not 

available, but rather inferred from other relevant 

evidence within the model. 

 

5. Structural integrity based on expert knowledge: The 

BNs represent the most widely accepted technique 

for incorporating expert knowledge along with 

relevant historical data. Since expert knowledge can 

be easily incorporated into these kind of models, 

future relevant studies may choose to retain the 

proposed structure of these models (even at the 

conceptual level) regardless of how limited the 

dataset might be in terms of the number of variables.  

 

On the other hand, the limitations are: 

 

1. Extensive effort required for development: 

Developing expert-driven BN models not only 

requires collaboration with domain experts but also 

an extensive iterative development process. In case 

study DSVM-P the overall effort spanned just over a 

year and in the DSVM-MSS study, which followed 

the DSVM-P study, just below six months. Even 

though the method presents and covers a range of 

techniques for reducing the burden of expert elicited 

models, this up-front development effort remains the 

primary barrier to more widespread adoption of 

BNs. 

 

2. Necessary use of subjectivity: The method and the 

resulting BNs models heavily rely on expert 

knowledge. Notwithstanding the various techniques 

inserted to avoid known biases for expert 

knowledge, it is impossible to avoid them 

completely, which inevitably assume subjectivity as 

well as possible bias. Involving multiple experts over 

the development process minimises the risk of bias, 

but further increases the effort required for 

development. 
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3. Complexity: The proposed method should lead to a 

minimum number of variables and a conceptually 

well-structured and rational model. However, 

because the method encourages incorporation of 

expert-driven variables (which are additional to 

those in the dataset) there is a risk that experts will 

over-complicate the model, adding multiple layers of 

detailed variables.  

 

Having identified the important limitations of 

depending on expert knowledge in almost all of the 

development stages, we need to justify its usefulness. It 

is important to note that, with the advent of 'big data' 

much of the current research on BN development 

assumes that sufficient data are available to learn the 

underlying BN structure, hence making the expert's 

input minimal or even redundant. For example, we could 

have made use of: 

 

1. algorithms designed for parameter learning with 

insufficient and/or imbalanced data [59]; 

 

2. BN learning methods that are appropriate for use 

with small datasets but which include a large 

number of variables [60]; 

 

Making use of such algorithms eliminates, or minimises, 

the requirement for expert elicitation. This is very 

convenient in the sense that a BN model can be 

generated without much effort since we can skip the 

process of knowledge elicitation, which is extremely time 

consuming since it typically requires collaboration with 

multiple domain experts.  

 Conversely, the method illustrated in this paper 

involves extensive use of expertise, in almost all of the 

development stages, which greatly increases the effort 

required. This is because: 

 

1. Modelling information that matters: We propose 

that the starting point of a decision support model is 

to determine what information we really require for 

inference, rather than generating a model based on 

what data is available. This is particularly important 

for the two case studies covered in this paper. This is 

because the available data is mostly represented by 

responses to questions rather than hard facts, and 

this causes numerous other decision support 

problems (see points 3 and 4 below). 

 

2. Poor quality data means meaningless BN structure: 

As discussed in Section 2, our case studies were 

based on datasets consisting of thousands of 

variables, but the sample sizes of those variables was 

below 1,000. To address this problem, the experts 

identified (in each case study) less than 100 model 

factors as a requirement in order to construct a 

comprehensive BN. 

On the other hand, if we were to make use of a 

structure learning algorithm we would have ended 

up with a extensively large network of associations 

between hundreds/thousands of responses as 

recorded from questionnaires and interviews. Even 

when these available responses represent 

information that associates with all of the ideal 

variables identified for inference, there is typically 

far too many variables and far too few samples in 

many medical applications to achieve any sensible 

structural learning with the state-of-the-art 

algorithms; especially in the case of complex and 

imbalanced data [61].  

 Using a structure learning algorithm in these 

scenarios results in models that may be superficially 

objective, but with a BN structure that is optimised 

for some features in the data. This is especially 

problematic when the structure is learned on biased 

datasets, which is a common challenge in healthcare 

settings with well-known inconsistencies in 

recording data. 

 

3. Interventional modelling and risk management: A 

number of interventions are typically available to the 

clinicians and probation officers for managing 

relevant risks of interests. The resulting BNs from 

this study provide this capability to the decision 

makers based on the framework described in Section 

7.  
A BN model learned purely from data in these 

scenarios will fail to capture the necessary 

underlying dependency structure in situations where 

interventions and controls for risk management are 

not captured by historical data. However, even if the 

historical data captures factors that represent 

interventions, this process still requires careful 

elicitation of expertise. This is because we require the 

expert/s to indicate which of the variables represent 

actual interventions. Furthermore, interventions 

need to satisfy specific structural-rules (e.g. Graph 

surgery and uncertain interventions). On the basis of 

uncertain interventions, we also require expertise to 

identify the variables which are responsible for the 

uncertainty of an intervention (e.g. responsiveness to 

treatment and motivation for treatment). 

Furthermore, if we were to generate a BN model 

from data, we would have ended up simulating 

interventions on questionnaire and interviewing 
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responses, rather than on more meaningful variables 

of interest.  

 
4. Counterfactual modelling: Counterfactual analysis 

enables decision makers to compare the observed 

results in the real world to those of a hypothetical 

world. That is, what actually happened and what 

would have happened under some different 

scenario. While counterfactual analysis is out of the 

scope of this paper, it is worth mentioning that this 

type of analysis requires further use of expertise, for 

counterfactual modelling purposes, as demonstrated 

in [62], and on the basis of the application domains 

considered in this paper. 

 

 

11 Future work 

The method is expected to be applicable to any other 

application domain which involves making inferences 

from data records which represent responses from 

questionnaires, surveys and interviews. For example, 

marketing is an area where questionnaire and survey 

data, as well as free-form data from focus groups and 

individual interviews is extensive. Furthermore, just like 

the medical domains, marketing decision making also 

involves critical intervention actions as covered in the 

proposed method. The method presented in this paper 

will help in describing a more general method to 

systemise the development of effective BNs for decision 

analysis in all of those common situations where there is 

limited or complex data but access to expert knowledge.  

 However, in domains such as cancer and 

bioinformatics it can be much more complex to retrieve 

relevant information from an expert and hence, under 

such cases there is an increased risk of a weakly defined 

BN model. As a result, for future research we are also 

interested in investigating ways to minimise expert 

dependency. One possible direction is to enhance 

structure learning algorithms, which allow for constrains 

based on expert knowledge [16-18, 63], with systematic 

rules for interventional risk management and decision 

analysis.  

 Furthermore, our future research directions 

include describing a more formal approach to generic 

problem framing that seeks to minimise model 

redundancy in conjunction with efficient use of expert 

knowledge and data. A formalised tool will also be 

developed to support these enhancements. These generic 

problems are being addressed in the BAYES-

KNOWLEDGE project [64].  

 
 

12 Conclusions 

We have presented a generic, repeatable method for 

developing real-world BN models that combine both 

expert knowledge and data, when (part of) the data is 

based on complex questionnaires and interviews with 

patients that is available in medical problems. 

 The method is described in six primary steps: a) 

Model objectives, b) BN structure, c) Data management, d) 

Parameter learning, e) Interventional modelling, and f) 

Structural validation. We have demonstrated how the 

incorporation of expert knowledge, along with relevant 

historical data, becomes necessary in an effort to provide 

decision makers with a model that goes beyond the 

predictive accuracy and into usefulness for risk 

management through intervention and enhanced 

decision support. 

 While most of the components of the method are 

based on established work, the novelty of the method is 

that it provides a rigorous consolidated and generalised 

framework that addresses the whole life-cycle of BN 

model development. This development process is 

applicable to any application domain which involves 

decision analysis based on complex information, rather 

than based on data with hard facts, and in conjunction 

with the incorporation of expert knowledge for decision 

support via intervention. The novelty extends to 

challenging the decision scientists to reason about 

building models based on what information is really 

required for inference, rather than based on what data is 

available. 

While the method requires an extensive iterative 

process between decision scientists and domain experts, 

BNs clearly offer potential for transformative 

improvements. The up-front development effort remains 

the primary barrier to more widespread adoption of BNs. 

The method presents and covers a range of techniques 

for reducing the burden of expert elicited models, and 

planned research directions will investigate ways to 

minimise expert dependency without damaging the 

decision support benefits illustrated in this paper. 

Although the method is the primary 

contribution, it is important to note that the resulting 

BNs in the case studies are, to our knowledge, the first 

instances of BN models in forensic psychiatry for the 

purposes of violence prevention management in the 

decision making of released prisoners and mentally ill 

patients discharged from MSS. 

 In validating the method, we have shown that 

while both BN applications provide improvements in 

predictive accuracy against the current state-of-the-art, 

an equally important contribution is the usefulness the 

models provide in terms of decision support (an 
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increasingly important criteria for models in medical 

informatics). Although the method was proposed and 

evaluated in a forensic medical setting, it is still expected 

to be applicable to any other real-world scenario, such as 

marketing, where BN models are required for decision 

support, where a) part of the data is based on complex 

questionnaire, survey, and interviewing data, and b) 

decision making involves the simulation of interventions 

on inferences as generated on the basis of such complex 

data, and in conjunction with expert knowledge. 
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APPENDIX A: The BN structure for DSVM-P & DSVM-MSS studies 

 

Figure A.1. The structure of the BN model from the DSVM-P study [10]. 
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Figure A.2. The structure of the DSVM-MSS study [11]. 
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APPENDIX B: The BN model variables that have been downgraded in terms of complexity 

 

Table B.1. The BN model variables, from both the DSVM-P and DSVM-MSS studies, that have been downgraded, in terms of complexity, in order to 

reduce the risk of model overfitting as a result of limited data. 

Model Model variable Values from data States in the BN 

DSVM-MSS Age 18 to 64 years 18-21/22-25/26-29/30-34/35-39/40-49/50-59/60+ 

DSVM-MSS Prior serious offences 0 to max None/One/2+ 

DSVM-MSS Length of stay as inpatient 7 to 7299 days Up to 1 year/Up to 2 years/Up to 5 years/5+ years 

DSVM-MSS PCLSVF1 Score 1 to 12 Low=0-1, Medium=2-5, High=6+ 

DSVM-MSS PCLSVF2 Score 1 to 12 Low=0-1, Medium=2-5, High=6+ 

DSVM-MSS PCLSVF3 Score 1 to 6 Low=0-1, Medium=2-3, High=4+ 

DSVM-MSS IQ Score 0 to max Low average/Average/High average 

DSVM-MSS Uncooperativeness Score from 1 to 7 No=1, Partly=2-4, Yes=5+ 

DSVM-MSS Social avoidance Score from 1 to 7 No=1, Partly=2-4, Yes=5+ 

DSVM-MSS Tension Score from 1 to 7 No=1, Partly=2-4, Yes=5+ 

DSVM-MSS Guilt feelings Score from 1 to 7 No=1, Partly=2-4, Yes=5+ 

DSVM-MSS Affective lability Score from 1 to 7 No=1, Partly=2-4, Yes=5+ 

DSVM-MSS Anger Score from 1 to 7 No=1, Partly=2-4, Yes=5+ 

DSVM-MSS Excitement Score from 1 to 7 No=1, Partly=2-4, Yes=5+ 

DSVM-MSS Suspiciousness Score from 1 to 7 No=1, Partly=2-4, Yes=5+ 

DSVM-MSS Hostility Score from 1 to 7 No=1, Partly=2-4, Yes=5+ 

DSVM-MSS Difficulty delaying 

gratification 

Score from 1 to 7 No=1, Partly=2-4, Yes=5+ 

DSVM-MSS Emotional withdrawal Score from 1 to 7 No=1, Partly=2-4, Yes=5+ 

DSVM-MSS Delusions Score from 1 to 7 No=1, Partly=2-4, Yes=5+ 

DSVM-MSS Hallucination Score from 1 to 7 No=1, Partly=2-4, Yes=5+ 

DSVM-MSS Grandiosity Score from 1 to 7 No=1, Partly=2-4, Yes=5+ 

DSVM-MSS Anxiety Score from 1 to 7 No=1, Partly=2-4, Yes=5+ 

DSVM-MSS Depression Score from 1 to 7 No=1, Partly=2-4, Yes=5+ 

DSVM-P Age 18 to 75 years 18-19/20-21/22-25/ 26-29/30-34/35-39/ 40-49/50-59/60+ 

DSVM-P Domestic stability a) Frequent address change: 

Integer, 

b) Eviction: Boolean, 

c) Family/friends 

unsupportive: Score 1 to 10. 

a) Frequent address change: No=0-3, Yes=4+, 

b) Eviction: No=false, Yes=true,  

c) Family/friends unsupportive: No=0-3, Yes=4+. 

 

Rule introduced: if at least two of the three variables above 

returns Yes, then Domestic stability=Low, otherwise Domestic 

stability=High. 

DSVM-P Financial difficulties a) Behind paying bills: Boolean, 

b) Services cut off: Boolean, 

c) Low income: Score from 0 to 

max. 

a) Behind paying bills: No=false, Yes=true, 

b) Services cut off: No=false, Yes=true, 

c) Low income: No=50+, Yes=0-49. 

 

Rule introduced: if at least one of the three variables above 

returns Yes, then Financial difficulties=Yes, otherwise Financial 

difficulties=No. 

DSVM-P Hazardous drinking Alcohol use disorder 

identification test (AUDIT): Score 

0 to 32. 

No=0-1, Yes=8+ 

DSVM-P Problematic life events a) Separation/divorce: Boolean, 

b) Problems with 

friends/family/neighbour: 

Boolean, 

c) Redundant/sucked: Boolean. 

a) Separation/divorce: No=false, Yes=true, 

b) Problems with friends/family/neighbour: No=false, 

Yes=true, 

c) Redundant/sucked: No=false, Yes=true, 

 

Rule introduced: if at least one of the three variables above 

returns Yes, then Problematic life events=Yes, otherwise 

Problematic life events=No. 

DSVM-P Stress High stress score 0 to max No=0-17, Yes=18+ 

DSVM-P Intelligence IQ Score 0 to 130 Extremely Low/ Borderline/ Low Average/Average/ High 

Average/Superior 

DSVM-P Criminal network a) Family/friends have criminal 

convictions: Boolean, 

b) Family/friends offered 

a) Family/friends have criminal convictions: No=false, 

Yes=true, 

b) Family/friends offered drugs: No=false, Yes=true, 
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drugs: Boolean, 

c) Family/friends asked for 

money/goods through crime: 

Boolean, 

d) Family/friends suggested to 

commit a crime: Boolean, 

e) Family/friends got into a 

fight: Boolean. 

c) Family/friends asked for money/goods through crime: 

No=false, Yes=true, 

d) Family/friends suggested to commit a crime: No=false, 

Yes=true, 

e) Family/friends got into a fight: No=false, Yes=true, 

 

Rule introduced: if at least one of the five variables above 

returns Yes, then Criminal network=Yes, otherwise Criminal 

network=No. 

DSVM-P Criminal attitude a) OK to steal if very poor: 

Score 1 to 5, 

b) OK to steal from the rick: 

Score 1 to 5, 

c) OK to steal from shops that 

make lots of money: Score 1 

to 5, 

d) Sometimes it is OK to break 

the law: Score 1 to 5, 

a) OK to steal if very poor: No=0-1, Yes=2+, 

b) OK to steal from the rick: No=0-1, Yes=2+, 

c) OK to steal from shops that make lots of money: No=0-1, 

Yes=2+, 

d) Sometimes it is OK to break the law: No=0-1, Yes=2+. 

 

Rule introduced: if at least one of the four variables above 

returns Yes, then Criminal attitude=Yes, otherwise Criminal 

attitude=No. 

DSVM-P Victimisation a) Victim of theft/burglary: 

Boolean, 

b) Victim of threats: Boolean, 

c) Assaulted: Boolean. 

a) Victim of theft/burglary: No=false, Yes=true, 

b) Victim of threats: No=false, Yes=true, 

c) Assaulted: No=false, Yes=true. 

 

Rule introduced: if at least one of the three variables above 

returns Yes, then Criminal network=Yes, otherwise Criminal 

network=No. 

DSVM-P Compliance with supervision Number of appointments missed 

with probation officer: Score 0 to 

max 

No=1+, Yes=0. 

DSVM-P Anger STAXI trait score: Score 0 to 27 No=0-2, Yes=3+. 

DSVM-P Cocaine (applies to all three 

cocaine variables; before, 

during and post-release) 

a) Cocaine powder: Boolean, 

b) Crack cocaine: Boolean, 

a) Cocaine powder: No=false, Yes=true, 

b) Crack cocaine: No=false, Yes=true, 

 

Rule introduced: if at least one of the two variables above 

returns Yes, then Cocaine=Yes, otherwise Cocaine=No. 

DSVM-P Responsiveness to treatment a) Not taken medication: 

Boolean, 

b) Missed injections: Boolean, 

a) Not taken medication: No=false, Yes=true, 

b) Missed injections: No=false, Yes=true, 

 

Rule introduced: if one of the two variables above returns Yes, 

then Responsiveness to treatment=Partly, if two of the variables 

above return Yes, then Responsiveness to treatment=No, 

otherwise Responsiveness to treatment=Yes. 

DSVM-P PCLR Total score PCL-R: Score 0 to 35 0-9/10-16/17-26/27+ 

DSVM-P Prior convictions Score 0 to max 0/1/2-5/6+ 

DSVM-P Prior acquisitive crime 

convictions 

Score 0 to max 0-2/3-12/13+ 

 


