
1

The Bayesys user manual

Anthony C. Constantinoua, b

Version 3.61

(last revision: Jun 2024)

a) Bayesian AI research lab,

Machine Intelligence and Decision Systems (MInDS) research group,

School of Electronic Engineering and Computer Science,

Queen Mary University of London,

London, UK, E1 4FZ.

E-mail: a.constantinou@qmul.ac.uk

b) The Alan Turing Institute, UK, British Library, London, UK, NW1 2DB.

www.bayesfusion.com

www.agena.ai

1 Citation: Constantinou, A. (2019). The Bayesys user manual. Bayesian AI research lab, MInDS research group,

Queen Mary University of London, London, UK. [Online]. Available: http://bayesian-ai.eecs.qmul.ac.uk/bayesys/

http://bayesian-ai.eecs.qmul.ac.uk/
https://minds.qmul.ac.uk/
mailto:a.constantinou@qmul.ac.uk
http://www.bayesfusion.com/
http://www.agena.ai/
http://bayesian-ai.eecs.qmul.ac.uk/bayesys/

2

Table of Contents

Copyright notice.. 3

Acknowledgements ... 4

List of Abbreviations .. 5

Introduction .. 6

1. Getting started with the Java NetBeans project... 7

2. Quick overview ... 10

3. Structure learning .. 11

3.1. Algorithms ... 11

3.2. Structure learning with categorical data ... 14

4. Structure learning with knowledge-based constraints .. 16

5. Evaluating graphical structures .. 22

6. Learning Bayesian network models .. 26

6.1. Converting a learned graph into a Bayesian network model in GeNIe 26

6.2. Converting a learned graph into a Bayesian network model in AgenaRisk 26

7. Worked example: Structure learning, evaluation, and parameterisation of a BN model. .. 27

7.1. Structure learning .. 27

7.2. Evaluate graph .. 29

7.3. Generate BN model in GeNIe .. 32

7.3.1. Generate BDN model in GeNIe ... 33

7.4. Generate BN model in AgenaRisk .. 35

8. Worked examples: Structure learning with knowledge-based constraints 37

9. Worked example: Performing multiple structure learning experiments 41

10. Worked example: Model-averaging ... 45

11. Generate synthetic data ... 48

11.1. Generate clean data .. 48

11.2. Generate noisy data... 48

12. Generate MAG ... 50

13. Troubleshooting and things to know .. 52

13.1. Input data files ... 52

13.2. While running the system... 52

13.3. NetBeans terminal output errors ... 52

13.4. Warnings ... 52

13.5. Computational time ... 53

13.6. BN model generator (GeNIe) .. 53

Appendix A: Revision notes ... 54

Appendix B: Stats for nerds ... 57

References.. 58

3

Copyright notice

Copyright © Bayesys.com. Bayesys is a free and an open-source

software package. This manual is distributed under the terms of a

CC BY-SA license: Creative Commons Attribution-ShareAlike 4.0

International License.

THE BAYESYS SYSTEM IS DISTRIBUTED AND LICENSED FREE OF CHARGE IN

THE HOPE IT WILL BE USEFUL. BECAUSE OF THIS, THERE IS NO WARRANTY OF

ANY KIND FOR THE ACCURACY OR USEFULNESS OF THIS INFORMATION

EXCEPT AS REQUIRED BY APPLICABLE LAW OR EXPRESSLY AGREED IN

WRITING.

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

4

Acknowledgements

a) This project was supported by the ERSRC Fellowship project EP/S001646/1 “Bayesian

Artificial Intelligence for Decision Making under Uncertainty” [1], by the project

partner Agena Ltd, and by The Alan Turing Institute.

b) Supported by Agena Ltd (UK) who develop AgenaRisk, which is a Bayesian network

software for risk analysis, AI and decision-making applications [2]. Bayesys enables

users to convert learned graphs into parameterised Bayesian network models with

appropriate file extensions that can be loaded into AgenaRisk [Note: The AgenaRisk

functions are no longer compatible with the new version of AgenaRisk which requires

active license and internet connection].

c) Supported by BayesFusion LLC (USA) who develop GeNIe, which is a tool for AI and

ML with Bayesian networks. Bayesys enables users to convert learned graphs into

parameterised Bayesian network models, including Bayesian decision

networks/Influence diagrams, with appropriate file extensions that can be loaded into

GeNIe.

d) Bayesys makes use of the open-source Graphviz visualisation system [3] that turns a

textual representation of a graph into a visual drawing. The Graphviz Java API, written

by Laszlo Szathmary, is incorporated into this Java project. Link to Laszlo’s Github

page: https://github.com/jabbalaci/graphviz-java-api

e) The following people have assisted by providing feedback, recommendations and

improvements:

Dr Kiattikun Chobtham,

Dr Yang Liu,

Dr Neville Kenneth Kitson,

Dr Zhigao Guo,

Dr Marek J. Druzdzel,

Mr Xiangyuan Tao.

https://github.com/jabbalaci/graphviz-java-api

5

List of Abbreviations

BDN Bayesian Decision Network.

BIC Bayesian Information Criterion.

BN Bayesian Network.

BNSL Bayesian Network Structure Learning.

BSF Balanced Scoring Function.

CPT Conditional Probability Table.

CPDAG Completed Partially Directed Acyclic Graph.

CSV Comma Separated Values.

DAG Directed Acyclic Graph.

DDM DAG Dissimilarity Metric.

FN False Negative.

FP False Positive.

GES Greedy Equivalence Search

GUI Graphical User Interface.

HC Hill-Climbing.

IDE Interactive Development Environment.

JDK Java Development Kit.

LL Log Likelihood.

MAG Maximal Ancestral Graph.

MAHC Model-Averaging Hill-Climbing

PAG Partial Ancestral Graph.

SHD Structural Hamming Distance.

TN True Negative.

TP True Positive.

UI User Interface.

6

Introduction

This manual describes the Bayesys open-source Bayesian network structure learning system.

This is a Java NetBeans project in active development.

This manual refers to the Bayesys version 3.6. Frequent revisions will continue to be published

online at www.bayesys.com (or http://bayesian-ai.eecs.qmul.ac.uk/bayesys/). For an overview

of any key revisions between released versions, refer to Appendix A.

http://www.bayesys.com/
http://bayesian-ai.eecs.qmul.ac.uk/bayesys/

7

1. Getting started with the Java NetBeans project

Bayesys is a Java application created using the NetBeans Interactive Development

Environment (IDE), so it is necessary to have Java and NetBeans installed on your computer

to run Bayesys.

What is described in this document applies to the Windows OS. While the project also runs on

MAC and Linux OS, you may experience compatibility issues on MAC/Linux when using the

functions that relate to the third-party Graphviz software that turns a textual representation of

a graph into a visual drawing; i.e., the process may corrupt the PDF files that should contain

drawings of the graphs. Please note that MAC/Linux users can still perform all other processes,

including obtaining the learned graphs in a CSV format.

The latest release of Bayesys has been validated for versions JDK 17 and Apache NetBeans

21. To set up the Bayesys NetBeans project:

a) Download and install the Java SE Development Kit version 17 (JDK – not the JRE),

appropriate for your OS, from https://www.oracle.com/java/technologies/downloads/ .

Preference should be given to the 64-bit version.

Be careful not to download or use a JDK version older than 17, since older versions

may require subscription fees – but JDK 17 or newer versions do not. If you have JDK

16 installed on your machine, you should uninstall it and install JDK 17.

b) Download the latest NetBeans IDE directly from

https://netbeans.apache.org/download/index.html. If you are given the option during

the installation process, preference should be given to the 64-bit version.

Once downloaded, install NetBeans IDE on your computer by clicking the downloaded

installation file (e.g., v13 called Apache-NetBeans-13-bin-windows-x64.exe on

Windows). You can generally just choose the default options to install NetBeans.

During the installation process, you will get the option to specify the directory of the

JDK. Ensure that JDK v17 is selected, as shown in Figure 1.1. The option to specify the

directory for JDK during the Apache Netbeans 21 installation process. below.

Figure 1.1. The option to specify the directory for JDK during the Apache Netbeans 21 installation process.

https://www.oracle.com/java/technologies/downloads/
https://netbeans.apache.org/download/index.html

8

Once the NetBeans installation has completed, running NetBeans should open a

window like:

Figure 1.2. The startup screen of NetBeans IDE 13.

c) Download the Bayesys Java NetBeans project from www.bayesys.com. The project is

compressed in a ZIP file extension. Extract the contents of the file to your preferred

directory.

d) In the Java NetBeans IDE, go to File, Open Project, and browse to the directory you

have extracted the Bayesys project. You should see , or a more recent

version, indicating that the folder is readable as a Java NetBeans project. Select the

readable folder and click Open Project to load Bayesys in NetBeans.

When loading the Bayesys project into NetBeans for the first time, you may be

prompted to install a plugin, as shown in Figure 1.3 below. You should complete the

plugin installation.

Figure 1.3. Likely to be prompted to install a plugin once you load Bayesys v3+ into NetBeans.

http://www.bayesys.com/

9

Once the project has been loaded into NetBeans, you should be able to view its

contents as shown in Figure 1.4. If not, click on to expand the ‘BNlearning’ directory.

To run the project, click the run button. If the run button is disabled, you can

enable it by first clicking on the Java class GUI.java which you can find under the

BNlearning directory shown in Figure 1.4.

Figure 1.4. The list of Java classes and other files associated with Bayesys v3.21.

10

2. Quick overview

Figure 2.1. Overview of the main learning methods available in Bayesys v3.55 implementation, with the
corresponding Sections within this manual that cover them in detail.

11

3. Structure learning

3.1. Algorithms

Five BN structure learning algorithms are currently available in Bayesys. These are:

a) SaiyanH a hybrid structure learning algorithm described in [4]2. It starts with a

dependency function that produces an undirected graph that can be viewed as an

extended version of the maximum spanning graph, ensuring that each variable

associates with at least one edge. It then obtains a DAG using a combination of

constraint-based, score-based and interventional impact rules. The DAG is then

provided as input to Tabu search, with the restriction not to delete edges that lead to

disjoint subgraphs or disjoint nodes.

The SaiyanH version available in Bayesys v3.2+ includes revisions that have

improved its accuracy slightly and its computational runtime considerably, in relation

to the results presented in [4] and [5], and to some extent [6]. Refer to Appendix A for

detailed revision notes.

b) MAHC (Model-Averaging Hill-Climbing) is a score-based algorithm described in [7].

It combines two novel strategies with hill-climbing search. The algorithm starts by

pruning the search space of graphs, where the pruning strategy can be viewed as an

aggressive version of the pruning strategies that are typically applied to combinatorial

optimisation structure learning problems. It then performs model averaging in the hill-

climbing search process and moves to the neighbouring graph that maximises the

objective function, on average, for that neighbour and over all its valid neighbours.

c) HC represents the classic score-based hill-climbing search. The HC algorithm used in

Bayesys is described in [6]. It starts from an empty graph and performs hill-climbing

search by exploring arc additions, reversals and deletions, moving to the DAG that

maximises the BIC score. The hyperparameter settings enable users to apply the

pruning strategies of MAHC to HC.

d) TABU represents the classic score-based Tabu search. The TABU algorithm

implemented in Bayesys is described in [6]. When it reaches a local maximum, it

performs |𝑉| escapes (where 𝑉 is the set of variables in the data) that minimally

decrease the BIC score, and repeats hill-climbing on each iteration of |𝑉| in an attempt

to escape a local maximum. The hyperparameter settings enable users to apply the

pruning strategies of MAHC to TABU.

e) GES (Greedy Equivalence Search) is a greedy algorithm that explores the space of

Markov equivalence classes [8]. It starts with an ‘insert’ phase that explores edge

additions that increase the objective score the most, and then moves to the ‘delete’ phase

in an analogous fashion until a final maximum scoring graph is produced.

Because Bayesys is designed to explore the DAG-space, rather than the

CPDAG-space, the GES algorithm in Bayesys is applied to the DAG space. That is, at

each iteration of arc addition, GES obtains the CPDAG of the current best DAG and

applies greedy search to all possible orientations of undirected edges, one at a time,

excluding orientations that lead to DAGs outside the equivalence class. This process

2 SaiyanH is a revised version of Saiyan [16]. Only SaiyanH is available in Bayesys.

12

approximates the equivalence search-space in exchange for lower computational

complexity; as opposed to applying greedy search to all possible Markov equivalence

DAGs at each iteration.

Table 3.1 summarises the accuracy and speed of each of the six algorithms described above,

based on synthetic data generated from six real-world networks that are available in the

Bayesys repository [9]. Descriptions about the evaluation metrics can be found in Section 5.

13

Table 3.1. CPDAG scores, runtime, and BIC scores of the five algorithms available in Bayesys. The networks used to generate clean synthetic data are available in [7]. Runtime (secs) is based on a single-
thread processing with CPU AMD R9 5950X on Windows 11. The last row presents the average scores (note SHD and BIC scaling might be biased) and runtime, where green and red colouring represents
superior and inferior relative performance respectively. Note that HC and TABU are highly sensitive to the order of the variables as they appear in the data [10], whereas SaiyanH and MAHC are sensitive
to a lower extent. These results assume default hyperparameter settings and are based on Bayesys v3.6 with JDK v1.7.

 HC TABU GES SaiyanH MAHC

Network

Nodes

Edges
Sample

size

BSF

SHD

F1
Runtime

(secs)

BIC

BSF

SHD

F1
Runtime

(secs)

BIC

BSF

SHD

F1
Runtime

(secs)

BIC

BSF

SHD

F1
Runtime

(secs)

BIC

BSF

SHD

F1
Runtime

(secs)

BIC
Asia 8 8 102 0.575 4 0.667 0 -377.6 0.575 4 0.667 0 -377.6 0.638 3.5 0.733 0 -378.3 0.525 5 0.625 0 -380.0 0.575 4 0.667 0 -377.6
Asia 8 8 103 0.700 3 0.800 0 -3259.2 0.700 3 0.800 0 -3259.2 0.700 3 0.800 0 -3259.2 0.712 3.5 0.765 0 -3269.0 0.700 3 0.800 0 -3259.2
Asia 8 8 104 1.000 0 1.000 0 -32264.6 1.000 0 1.000 0 -32264.6 1.000 0 1.000 0 -32264.6 1.000 0 1.000 0 -32264.6 0.875 1 0.875 0 -32286.3
Asia 8 8 105 1.000 0 1.000 0 -322411.7 1.000 0 1.000 0 -322411.7 1.000 0 1.000 0 -322411.7 0.813 1.5 0.867 0 -326561.6 0.875 1 0.875 0 -322697.5

Sports 9 15 102 0.067 14 0.118 0 -1990.3 0.067 14 0.118 0 -1990.3 0.067 14 0.118 0 -1990.3 0.419 9 0.519 0 -5200.8 0.067 14 0.118 0 -1990.3
Sports 9 15 103 0.600 6 0.750 0 -16698.0 0.600 6 0.750 0 -16698.0 0.600 6 0.750 0 -16698.0 0.419 9 0.609 0 -16857.6 0.333 10 0.500 0 -17115.2
Sports 9 15 104 0.600 6 0.750 0 -158258.6 0.519 7.5 0.680 0 -158146.8 0.600 6 0.750 0 -158258.6 0.438 9 0.615 0 -159037.4 0.600 6 0.750 0 -158258.6
Sports 9 15 105 1.000 0 1.000 0 -1550580.0 1.000 0 1.000 0 -1550580.0 1.000 0 1.000 0 -1550580.0 1.000 0 1.000 2 -1550580.0 0.457 9 0.643 2 -1566413.7

Property 27 31 102 0.226 28.5 0.306 0 -5085.1 0.226 28.5 0.306 0 -5085.1 0.226 28.5 0.306 0 -5085.1 0.401 28.5 0.443 0 -22988.8 0.213 28 0.298 0 -5091.8
Property 27 31 103 0.536 18 0.596 0 -39710.3 0.536 18 0.596 0 -39710.3 0.497 21 0.542 0 -39884.8 0.507 22.5 0.569 0 -54854.5 0.474 19 0.577 0 -40432.2
Property 27 31 104 0.620 19 0.615 0 -348584.3 0.607 18.5 0.609 0 -348432.2 0.553 22 0.545 0 -348517.3 0.752 9.5 0.783 5 -358660.7 0.720 10.5 0.776 0 -355305.3
Property 27 31 105 0.665 18.5 0.632 5 -3379042.8 0.701 16.5 0.672 7 -3378929.0 0.630 20.5 0.594 5 -3376385.5 0.703 11 0.733 57 -3516923.5 0.845 7.5 0.869 6 -3450773.4

Diarrhoea 28 68 102 0.120 64.5 0.216 0 -2982.4 0.120 64.5 0.216 0 -2982.4 0.120 64.5 0.216 0 -2982.4 0.134 74.5 0.243 0 -4889.2 0.119 63 0.212 0 -2990.0
Diarrhoea 28 68 103 0.324 46 0.454 0 -28087.0 0.338 45 0.469 0 -28086.0 0.309 47 0.433 0 -28088.3 0.350 45 0.485 0 -28156.2 0.294 48 0.426 0 -28172.8
Diarrhoea 28 68 104 0.560 31.5 0.675 0 -272995.8 0.574 30.5 0.687 0 -272969.8 0.545 32.5 0.658 0 -273148.4 0.596 27.5 0.717 4 -273171.6 0.548 31.5 0.676 1 -273089.4
Diarrhoea 28 68 105 0.799 16 0.833 7 -2705054.1 0.799 16 0.833 10 -2704993.8 0.818 15.5 0.856 8 -2705622.5 0.647 24 0.759 48 -2710582.6 0.813 13.5 0.860 55 -2704523.8

Alarm 37 46 102 0.264 38.5 0.338 0 -2219.1 0.264 38.5 0.338 0 -2219.1 0.264 38.5 0.338 0 -2219.1 0.468 43 0.479 0 -3722.5 0.223 38.5 0.309 0 -2303.0
Alarm 37 46 103 0.652 22.5 0.670 0 -17109.2 0.652 22.5 0.670 0 -17092.9 0.652 22.5 0.670 1 -17109.2 0.675 27 0.667 0 -17517.6 0.557 25 0.612 0 -17659.1
Alarm 37 46 104 0.725 21 0.701 0 -154627.1 0.725 21 0.701 0 -154627.1 0.725 21 0.701 2 -154627.1 0.876 8.5 0.880 8 -153073.5 0.711 17 0.725 2 -154381.9
Alarm 37 46 105 0.826 14.5 0.794 7 -1510655.1 0.827 13.5 0.802 10 -1510476.1 0.826 14.5 0.794 9 -1510780.7 0.706 20 0.688 80 -1528637.1 0.753 16 0.737 37 -1525408.3

ForMed 88 138 102 0.319 132.5 0.392 1 -7139.6 0.326 131.5 0.399 5 -7136.3 0.316 132 0.390 77 -7148.7 0.260 194.5 0.271 6 -93505.0 0.247 114.5 0.350 2 -7263.8
ForMed 88 138 103 0.644 66.5 0.705 2 -63027.5 0.648 65 0.711 5 -63017.7 0.621 72.5 0.681 147 -63263.6 0.512 113.5 0.520 17 -131780.9 0.506 71 0.619 11 -64038.9
ForMed 88 138 104 0.810 43.5 0.809 7 -608020.9 0.818 42.5 0.814 12 -607941.1 0.791 52 0.775 264 -608656.9 0.658 53 0.740 120 -614544.9 0.731 39 0.805 50 -610503.2
ForMed 88 138 105 0.638 125 0.542 92 -6020284.1 0.642 123.5 0.546 140 -6020277.9 0.619 132.5 0.521 495 -6022242.0 0.698 45.5 0.772 1252 -6098168.4 0.875 23 0.900 280 -6022568.9

Pathfinder 109 195 102 0.106 223.5 0.165 1 -6512.7 0.109 223 0.168 5 -6501.1 0.106 223.5 0.165 37 -6512.7 0.156 265 0.201 5 -30999.2 0.149 195 0.231 2 -6677.4
Pathfinder 109 195 103 0.189 231.5 0.252 3 -51632.6 0.189 231.5 0.252 6 -51632.6 0.189 230.5 0.252 146 -51632.8 0.216 275.5 0.246 26 -140104.7 0.146 224.5 0.207 11 -53873.3
Pathfinder 109 195 104 0.288 231.5 0.333 11 -413262.2 0.288 231.5 0.334 23 -411614.6 0.288 231.5 0.333 324 -413232.1 0.261 246.5 0.298 208 -502086.1 0.233 235.5 0.284 112 -438628.6
Pathfinder 109 195 105 0.481 161 0.530 115 -3632770.3 0.481 162 0.529 135 -3630497.9 0.481 161 0.530 381 -3633999.5 0.323 202.5 0.384 2304 -4079289.7 0.452 159 0.519 3836 -3707912.5
COVID-19 17 37 102 0.152 32 0.245 0 -2718.1 0.142 33 0.240 0 -2715.2 0.152 32 0.245 0 -2718.1 0.169 34.5 0.298 0 -6194.6 0.135 32 0.217 0 -2778.0
COVID-19 17 37 103 0.416 23.5 0.541 0 -21364.1 0.416 23.5 0.541 0 -21364.1 0.416 23.5 0.541 0 -21364.1 0.409 22.5 0.517 0 -21785.4 0.395 23 0.536 0 -22038.0
COVID-19 17 37 104 0.554 19 0.620 0 -179373.9 0.554 19 0.620 0 -179373.9 0.544 20 0.611 0 -180904.0 0.679 15 0.761 1 -181953.0 0.639 14 0.716 1 -185765.6
COVID-19 17 37 105 0.538 24 0.585 2 -1684320.9 0.551 23.5 0.590 3 -1681354.4 0.514 25.5 0.573 2 -1686436.1 0.814 10 0.842 15 -1685243.7 0.727 14.5 0.747 36 -1696371.8
DIABETES 22 37 102 0.005 39 0.048 0 -1904.2 0.005 39 0.048 0 -1904.2 0.005 39 0.048 0 -1904.2 -0.009 54 0.174 0 -4075.9 0.012 38 0.049 0 -1904.3
DIABETES 22 37 103 0.236 29 0.333 0 -18090.1 0.236 29 0.333 0 -18090.1 0.236 29 0.333 0 -18090.1 0.227 38 0.343 0 -19114.8 0.222 29.5 0.321 0 -18104.4
DIABETES 22 37 104 0.486 19 0.581 0 -178821.8 0.486 19 0.581 0 -178821.8 0.411 22.5 0.492 0 -179069.0 0.476 23 0.551 1 -178874.6 0.486 19 0.581 0 -178824.5
DIABETES 22 37 105 0.790 8.5 0.819 3 -1775337.5 0.817 7.5 0.847 4 -1775160.3 0.721 12.5 0.743 2 -1775983.2 0.599 17 0.676 18 -1778641.8 0.811 7 0.857 4 -1775820.3

Average score/runtime 0.514 49.46 0.567 7.1 -700460 0.515 49.21 0.569 10.1 -700243 0.505 50.56 0.557 52.8 -700651 0.516 55.22 0.584 116 -731491 0.487 44.6 0.562 123.6 -707100

14

3.2. Structure learning with categorical data

Once you load Bayesys in NetBeans IDE, as illustrated in Section 1, click the Run button. The

window shown in Figure 3.1 should appear.

Figure 3.1. Methods available under tab Main in Bayesys v3.5.

Select the method Structure learning under tab Main. This will activate tab Learning which

provides access to some algorithm-specific parameter inputs, some of which can be modified.

Before you run Structure learning, ensure you have placed the input data set named

trainingData.csv in folder Input. For an example, see subsection 7.1. Note that:

a) Each column in trainingData.csv represents a variable (do not include an ID

column), and each row a data sample.

b) All variables are assumed to be categorical. The algorithm assumes a unique

category for each unique variable value, which makes it unsuitable for structure

learning with continuous data.

c) There should not be any empty cells in trainingData.csv. If your data set contains

missing values, you could address this using a data imputation algorithm, such as

the MBMF (Markov-Blanket MissForest) which is suitable for both random and

systematic missingness [11]; direct link to GitHub package here. Alternatively, you

could replace all empty cells with a new state called “missing”, or any other state

name to differentiate it from observed values. This way the algorithm performs

structure learning under the assumption that the missing values are not missing at

random.

https://github.com/Enderlogic/Markov-Blanket-based-Feature-Selection

15

3.3. Structure learning outputs

The structure learning process generates three types of output. These are:

a) Edges: the file DAGlearned.csv in folder Output. This file contains all the arcs

discovered between variables.

b) Graphs (optional): a drawing of the true and learned DAGs and CPDAGs in PDF

format. The true graphs are generated in folder Input and the learned graphs in folder

Output. These features are optional and can be selecting under Evaluate graph in tab

Main.

c) Algorithm-specific outputs (optional): Some algorithms can produce additional output

information. For example, selecting SaiyanH under tab Main, followed by Save learned

graph/s as PDF in the algorithm’s folder, produces three PDF files in directory

Output/SaiyanH. Each of those PDF files corresponds to the graph produced at the end

of each of the three learning phases in SaiyanH.

 Additional output information for SaiyanH can be found under tab Learning →
 SaiyanH. Selecting Save associational scores generates four CSV files, in directory

Output/SaiyanH, that capture the marginal associational scores generated during the first

structure learning (one file), and the conditional associational scores generated during

the second phase (three files).

For troubleshooting and things to know, refer to Section 13.

16

4. Structure learning with knowledge-based constraints

The Structure learning process also activates tab Knowledge which can be used to incorporate

various soft and hard knowledge-based constraints. Figure 4.1 presents the methods available

under tab Knowledge. Table 4.1 summarises each of these constraints, and further details are

available in [6].

Figure 4.1. The knowledge approaches available under tab Knowledge in Bayesys v3.2.

In brief, the knowledge approaches are:

Directed: represents directed edges that should be preserved during structure learning. This

knowledge approach requires the file constraintsDirected.csv in folder Input. An example of

this file is shown in Figure 4.2, where the encoding specifies the arcs that must be preserved

in the search space of graphs. In this example, the search space of graphs will be restricted to

those containing 𝐴 → 𝐵, 𝐹 → 𝐺 and 𝑇 → 𝐴.

Figure 4.2. An example of Directed constraints encoded in input file constraintsDirected.csv.

17

Undirected: represents edges that should be preserved during structure learning. This

knowledge approach requires the file constraintsUndirected.csv in folder Input. An example

of this input file is shown in Figure 4.3, where the encoding specifies the edges that must be

preserved in the search space of graphs. In this example, the search space of graphs will be

restricted to those containing 𝐴 → 𝐵 or 𝐴 ← 𝐵, 𝐹 → 𝐺 or 𝐹 ← 𝐺, and 𝑇 → 𝐴 or 𝑇 ← 𝐴.

Figure 4.3. An example of Undirected constraints encoded in input file constraintsUndirected.csv.

Forbidden: represents edges that should not be explored during structure learning. This

knowledge approach requires the file constraintsForbidden.csv in folder Input. An example of

this input file is shown in Figure 4.4, where the encoding specifies the edges that should not

be investigated in the search space of graphs. In this example, the search space of graphs will

be restricted to those satisfying 𝐴 ⊥ 𝐵, 𝐹 ⊥ 𝐺 and 𝑇 ⊥ 𝐴.

Figure 4.4. An example of Forbidden constraints encoded in input file constraintsForbidden.csv.

Temporal: represents temporal restrictions during structure learning. This knowledge

approach requires the file constraintsTemporal.csv in folder Input. An example of this input

file is shown in Figure 4.5, where the encoding specifies that a variable within a higher tier

cannot serve as a parent or an ancestor of a variable within a lower tier.

Note that not all the variables need to be assigned to a tier. Bayesys assumes that a

variable not assigned to a particular tier is under no temporal restrictions. Lastly, temporal

restrictions can be extended to prohibit edges between variables of the same tier, by selecting

the sub-process Prohibit edges between variables of the same tier.

Figure 4.5. Hypothetical Temporal constraints encoded in input file constraintsTemporal.csv. The column ID
(represents the max number of constraints in a tier) and column END must be present in this input file as shown in
this figure.

18

Decision network: performs the necessary visual modifications needed to convert the

generated PDF graph from a BN graph into a Bayesian Decision Network (BDN; also known

as an Influence Diagram) graph, where Decision nodes are represented by rectangles, Utility

nodes by diamonds, and Informational arcs entering Decisions by dashed arcs. This knowledge

approach requires the file constraintsBDN.csv in folder Input. An example of this input file is

shown in Figure 4.6, where the encoding specifies which nodes represent ‘decisions’ and

which nodes represent ‘utility’. The data column State to maximise is useful only when the

learned graph is converted into a BDN model in GeNIe (refer to subsections 6.1 and 7.3).

Figure 4.6. An example of BDN constraints encoded in input file constraintsBDN.csv.

Further, selecting the sub-process Guarantee a child for Decisions and a parent for

Utilities restricts structure learning such that ‘decision’ nodes will have at least one child node
and ‘utility’ nodes will have at least one parent node. This restriction is imposed at the end of

each structure learning algorithm, where further arcs are added to the learned graph, such that

minimally decrease the BIC score, until the BDN conditions are met.

Figure 4.7 illustrates a case where the graph on the left represents the standard BN

graphical output generated by HC-DAG for the ASIA network. The graph in the middle

represents the output of approach Decision network with asia specified as a ‘decision’ node

and smoke specified as a ‘utility’ node in constraintsBDN.csv. Lastly, the graph on the right

represents the modified graph produced by the sub-process Guarantee a child for Decisions

and a parent for Utilities. The ‘decision’ and ‘utility’ and selected purely for illustration

purposes.

Figure 4.7. How the learned graph on the left (in this example generated by HC) can be influenced by the approach
Decision networks and its sub-process Guarantee a child for Decisions and a parent for Utilities.

19

Initial graph: represents a soft constraint that guides structure learning from a given best-

guess initial graph, rather than from an empty graph. This knowledge approach requires the file

constraintsGraph.csv in folder Input. The structure of this input file is identical to the example

shown in Figure 4.2 on Directed edges, but in this case the encoding specifies which arcs must

be present in the initial, rather than the learned, graph.

Variables are relevant: imposes the restriction on the learned graph not to contain disjoint

subgraphs or nodes. This constraint is inherited from SaiyanH which incorporates this

restriction by design. Therefore, selecting Variables are relevant while performing structure

learning with SaiyanH should make no difference to the learned output; but it is useful for all

the other available algorithms.

Target nodes: encourages structure learning to produce a higher number of potential causes

for targeted variables of interest. It can be useful when working with high dimensional data of

limited sample size, which tend to lead to sparse networks that do not adequately capture all

the potential causes of effects of interest.

Specifically, this soft constraint encourages structure learning to produce larger parent-

sets for targeted nodes by diminishing the dimensionality penalty of the BIC score. This is

achieved by decreasing the rate of increase of the number of free parameters given as an input

to the BIC score, for a targeted variable. The modified 𝐵𝐼𝐶𝑟 for graph 𝐺 and data 𝐷 is:

𝐵𝐼𝐶𝑇𝐴𝑅−𝑉𝐴𝑅 = 𝐿𝐿(𝐺|𝐷) − (
𝑙𝑜𝑔2𝑁

2
)𝑝

where 𝑁 is the sample size of 𝐷, and 𝑝 is the adjusted number of free parameters in 𝐺, given

𝑝 = ∑

(

 (𝑠𝑖 − 1)∏𝑞𝑗

|𝜋𝑣𝑖|

𝑗
)

 𝑟𝑖⁄

|𝑉|

𝑖

where 𝑉 is the set of variables in graph 𝐺, |𝑉| is the size of set 𝑉, 𝑠𝑖 is the number of states of

𝑣𝑖, 𝜋𝑣𝑖 is the parent set of 𝑣𝑖, |𝜋𝑣𝑖| is the size of set 𝜋𝑣𝑖, 𝑞𝑗 is the number of states of 𝑣𝑗 in parent

set 𝜋𝑣𝑖, and 𝑟𝑖 is the new parameter used to diminish the free parameters penalty for targeted

variables; i.e., 𝑟 = 1 for non-targeted variables and 𝑟 > 1, as determined by the user, for

targeted variables.

This knowledge approach requires the file constraintsTarget.csv in folder Input. An

example of this input file is shown in Figure 4.8, where the encoding specifies which nodes

should be targeted. Figure 4.9 presents how to set the penalty reduction 𝑟𝑖 through the UI,

which can be found as a parameter input under the Target nodes constraint.

Figure 4.8. An example of Target nodes constraint encoded in input file constraintsTarget.csv.

20

Figure 4.9. How to specify the dimensionality penalty reduction parameter input 𝑟, for the Target nodes constraint.

Many of the knowledge approaches can be combined. For example, the Directed

constraint can be combined with the Forbidden and Temporal constraints, but not with the

Undirected constraint. Figure 4.10 presents an example of the output information generated in

the terminal window of NetBeans regarding the number of restrictions imposed into the

structure learning process, by each constraint approach.

Figure 4.10. An example of the output information generated in the terminal window of NetBeans regarding the
number of restrictions imposed into the structure learning process by each knowledge approach. The example
assumes no constraints and is based on Bayesys v2.2.

For troubleshooting and things to know, refer to Section 13.

21

Table 4.1. The soft and hard knowledge-based constraints as described in [6].

ID Knowledge

approach
Knowledge input

example
Knowledge

Constrains or guides

DIR-EDG Directed
edge

𝐴 → 𝐵 Causal relationship or
direct dependency.

Constrains the search space of graphs
to those containing 𝐴 → 𝐵.

UND-EDG Undirected
edge

𝐴 − 𝐵 Causal relationship or
direct dependency without
knowledge of the direction
of the relationship.

Constrains the search space of graphs
to those containing 𝐴 → 𝐵 or 𝐴 ← 𝐵.

FOR-EDG Forbidden
edge

𝐴 ⊥ 𝐵 No causal relationship or
direct dependency.

Constrains the search space of graphs
to those not containing 𝐴 → 𝐵 and 𝐴 ←
𝐵.

REL-TEM Relaxed
incomplete
temporal
order

Tier 1: {𝐴}
Tier 2: {𝐵, 𝐶}

Temporal information such
that 𝐵 and 𝐶 occur after
observing 𝐴 and hence, 𝐵
and 𝐶 cannot be parents
nor ancestors of 𝐴.

Constrains the search space of graphs
to those not containing 𝐴 ← 𝐵, 𝐴 ← 𝐶,
or 𝐵 and/or 𝐶 as ancestors of 𝐴.

STR-TEM Strict
incomplete
temporal
order

Tier 1: {𝐴}
Tier 2: {𝐵, 𝐶}

In addition to constraint
𝑅𝐸𝐿 − 𝑇𝐸𝑀, it prohibits
edges between nodes of
the same tier.

As in REL-TEM, plus constrains the
search space of graphs to those not
containing 𝐵 → 𝐶 or 𝐵 ← 𝐶.

INI-GRA Initial graph DAG An initial best guess graph Can be viewed as a soft constraint that
guides structure learning by changing
the starting point in the search space of
graphs from an empty graph to an initial
best-guess graph.

VAR-REL Variables are
relevant

n/a All variables in the input
data are relevant.

The learnt graph must not contain
disjoint subgraphs or unconnected
nodes.

TAR-VAR Target
variable/s

A node 𝐴 or a set of
nodes {𝐴, 𝐵}

A target variable, or a set of
variables, for which we
would favour higher
dimensionality in the form
of an increased parent-set
for those variables.

Can be viewed as a soft constraint that
guides the search space of graphs to
those in which targeted variable 𝐴, or
variable set {𝐴,𝐵}, is assigned a relaxed
dimensionality penalty, as determined
by the user, through the objective
function.

REL-BDN Relaxed
BDNs

A set of Decision
nodes {𝐴, 𝐵} and

Utility nodes {𝐶, 𝐷}

Some of the input variables
represent decisions or
utilities.

The learnt graph is a BDN graph
containing Decisions {𝐴, 𝐵} and Utilities
{𝐶, 𝐷} represented by rectangle and
diamond nodes respectively, where arcs
entering Decisions are Informational
represented by a dashed arc.

STR-BDN Strict BDNs A set of Decision
nodes {𝐴, 𝐵} and

Utility nodes {𝐶, 𝐷}

 As in REL-BDN, plus constrains the
learnt graphs to those where Decision
nodes {𝐴, 𝐵} and Utility nodes {𝐶,𝐷}
have at least one child and parent node
respectively.

22

5. Evaluating graphical structures

The process Evaluate graph can be used to evaluate the accuracy of the learned graph with

reference to the true graph. As shown in Figure 5.1a, this process also gives us the option to

generate PDFs of the true DAG and true CPDAG in folder Input, as well as the learned DAG

and learned CPDAG in folder Output. Moreover, selecting Evaluate graph in tab Main also

activates the tab Evaluation shown in Figure 5.1b, which gives the option to the user to indicate

which evaluation scores to generate (all scores are selected by default). Lastly, Evaluate graph

can be performed with or without Structure learning. For an example, see subsection 7.2.

Note that when Saved learned DAG as PDF, under Evaluate graph, is combined with

the Decision network knowledge approach under tab Knowledge (refer to Section 4), the PDF

graph will represent a Bayesian Decision Network (BDN) that includes ‘decision’ and ‘utility’

nodes, and will be named BDNlearned.PDF instead of DAGlearned.pdf. This process takes

into consideration both the DAGlearned.csv and constraintsBDN.csv files (refer to Figure 4.6).

(a) (b)

Figure 5.1. The Evaluate graph process, along with the available graph-based and inference-based metrics under
tab Evaluation. The figure is based on Bayesys v3.

The first five graph-based metrics under tab Evaluation require the following two input files:

a) the DAGtrue.csv in folder Input, and

b) the DAGlearned.csv in folder Output,

encoded as shown in Figure 5.2. If we run Evaluate graph together with Structure learning,

the DAGlearned.csv file will be generated in folder Output at the end of the structure learning

process, before the system runs the evaluation method. If we run Evaluate graph without

Structure learning, we would need to manually place the DAGlearned.csv file in folder Output,

in addition to the DAGtrue.csv file in folder Input, before running the evaluation.

23

Figure 5.2. An example of the DAGtrue/DAGlearned.csv input/output file.

The five scoring metrics are:

Confusion matrix stats: this metric produces the following scores:

• True Positives (𝑇𝑃): the number of correct edges present in the learned graph.

• Half True Positives (𝑇𝑃 × 0.5): the number of partially correct edges (e.g., ←, −, or ↔

instead of →) present in the learned graph.

• False Positives (𝐹𝑃): the number of incorrect edges present in the learned graph.

• True Negatives (𝑇𝑁): the number of correct edges absent in the learned graph.

• False negatives (𝐹𝑁): the number of incorrect edges absent in the learned graph (i.e.,

edges not discovered).

Precision: defined as TP/(TP + FP), represents the rate of correct edges over all edges

discovered.

Recall: defined as TP/(TP + FN), represents the rate of edges discovered over all edges in the

true graph.

F1 Score: represents the harmonic mean of Recall and Precision, defined as:

F1 = 2
𝑟𝑝

𝑟 + 𝑝

where 𝑟 is Recall and 𝑝 is Precision. The F1 score ranges from 0 to 1, where 1 represents the

highest score (with perfect Precision and Recall) and 0 the lowest.

Structural Hamming Distance (SHD): defined as the minimum number of edge insertions,

deletions, and arc reversals needed to transform the learned graph into the true graph. In

Bayesys the number of insertions and deletions generate a penalty of 1, while arc reversals

generate a penalty of 0.5, as we later define in Table 5.1 and Table 5.2. This adjustment is

made to acknowledge the fact that an arc reversal represents correct dependency but with an

incorrect direction.

DAG Dissimilarity Metric (DDM): a score that ranges from −∞ to 1, where the score of 1

indicates perfect agreement between the two graphs. The score moves to −∞ the stronger the

dissimilarity is between the two graphs. Specifically, if we compare how dissimilar the graph

𝐴 is with respect to graph 𝐵, then:

24

DDM =
𝑇𝑃 +

𝑐
2 − 𝐹𝑁 − 𝐹𝑃

𝑡

where 𝑐 is the number of edges in 𝐵 that are reoriented in 𝐴, and 𝑡 is total number of edges in

𝐵.

Balanced Scoring Function (BSF): This is a metric that takes into consideration all the four

confusion matrix parameters (i.e., TP, TN, FP, and FN) to balance the score between direct

independencies and direct dependencies [12]. Specifically:

BSF =
1

2
(
TP

𝑎
+
TN

𝑖
−
FP

𝑖
−
FN

𝑎
)

where 𝑎 is the numbers of edges and 𝑖 is the number of direct independences in the true graph,

and:

𝑖 =
|𝑉|(|𝑉| − 1)

2
− 𝑎

where |𝑉| is the number of variables in the data; i.e., the size of set 𝑉 containing the data

variables.

The BSF score ranges from -1 to 1, where a score of -1 corresponds to the worst possible

graph (i.e., the reverse of the true graph), a score of 1 corresponds to a perfect match between

the learned and the true graphs, and a score of 0 corresponds to a learned graph that is

equivalent to the score generated by an empty or a fully connected graph.

Table 5.1. The DAG penalty weights used by the scoring metrics implemented in Bayesys.

Rule True graph Learned graph Penalty Reasoning
1 A →  B A →  B, A o→ B 0 Complete match
2 A →  B A ↔  B, A − B ,  A ←  B,  A←o B 0.5 Partial match
3 any edge no edge 1 No match
4 A ↔ B A ↔ B 0 Complete match
5 A ↔ B A − B ,  A ← B,  A → B,  A ← oB,  Ao → B 0.5 Partial match
6 no edge no edge 0 Complete match
7 no edge Any edge/arc 1 No match

Table 5.2. The CPDAG penalty weights used by the scoring metrics implemented in Bayesys [7].

Rule True graph Learned graph Penalty Reasoning
1 A → B A → B, A o→ B 0 Complete match
2 A → B A ↔ B, A − B ,  A ← B,  A ← oB 0.5 Partial match
3 any edge no edge 1 No match
4 A ↔ B A ↔ B 0 Complete match
5 A ↔ B A − B ,  A ← B,  A → B,  A ← oB,  Ao → B 0.5 Partial match
6 A − B A − B 0 Complete match
7 A − B A ↔ B ,  A ← B,  A → B,  A ← oB,  Ao → B 0.5 Partial match
8 no edge no edge 0 Complete match
9 no edge Any edge/arc 1 No match

25

While all the algorithms implemented in Bayesys produce a DAG, the five above

graphical-based metrics are used to produce both DAG and CPDAG scores as described in

Table 5.1 and Table 5.2 respectively. Note that the scoring functions also consider the case of

a Mixed Ancestral Graph (MAG); i.e., the file DAGlearned.csv can contain undirected and

bidirected edges. This is useful when trying to evaluate a graph produced by an algorithm

available is some other structure learning software.

In addition to the five graphical-based metrics, selecting Indep. graphical fragments

will return the number of independent graphical fragments (i.e., disjoint subgraphs/nodes)

found in the learned graph. Note this method requires the file trainingData.csv to be present in

folder Input, in addition to the DAGlearned.csv and DAGtrue.csv files.

 Lastly, selecting the inference-based metric BIC score will output the Bayesian

Information Criterion (BIC) score of the learned graph. This method requires the file

trainingData.csv in folder Input and the file DAGlearned.csv in folder Output. Assuming3 log2,

the BIC score in Bayesys is computed as follows:

𝐵𝐼𝐶 = 𝐿𝐿(𝐺|𝐷) − (
𝑙𝑜𝑔2𝑁

2
) 𝑝

for DAG 𝐺 given data 𝐷, where 𝐿𝐿 is the log-likelihood, 𝑁 is the sample size of 𝐷, and 𝑝 is

the number of free parameters (also known as independent parameters) in 𝐺. Assuming 𝑉 is

the set of variables 𝑣𝑖 in graph 𝐺, and |𝑉| is the size of set 𝑉, the number of free parameters 𝑝

is:

𝑝 = ∑(𝑠𝑖 − 1)

|𝑉|

𝑖

∏𝑞𝑗

|𝜋𝑣𝑖|

𝑗

where 𝑠𝑖 is the number of states of 𝑣𝑖, 𝜋𝑣𝑖 is the parent set of 𝑣𝑖, |𝜋𝑣𝑖| is the size of set 𝜋𝑣𝑖, and

𝑞𝑗 is the number of states of 𝑣𝑗 in parent set 𝜋𝑣𝑖. Note that selecting the metric Log-Likelihood

score produces 𝐿𝐿(𝐺|𝐷), which is the first part of the BIC equation and represents a score that

tells us how well the learned distributions fit the empirical distributions; whereas the second

part of the BIC equation represents the dimensionality penalty of the model.

 The BIC score can also be computed for MAGs that include bi-directed edges. When a

bi-directed edge is found in DAGlearned.csv, Bayesys will estimate the BIC MAG score by

enumerating all possible valid DAGs that could have been produced via all directed

combinations of bi-directed edges, and return the average BIC score over those valid DAGs.

For troubleshooting and things to know, refer to Section 13.

3 The UI provides a selection of different log scales for computing the BIC score.

26

6. Learning Bayesian network models

6.1. Converting a learned graph into a Bayesian network model in GeNIe

This step requires that you download and install the GeNIe software, which is “a tool for

artificial intelligence modelling and machine learning with Bayesian networks and other types

of graphical probabilistic models”. GeNIe can be downloaded from

https://www.bayesfusion.com/downloads/. Note that GeNIe is free for academic users or for

academic teaching and research.

A GeNIe BN model can be generated by selecting Generate BN model and the

subprocess GeNIe, both of which can be found under tab Main. This method requires the input

files trainingData.csv in folder Input and DAGlearned.csv in folder Output, and can be

performed with or without Structure learning. The output of this process will be a file called

GeNIe_BN.xdsl in folder Output, which can be loaded into the GeNIe software. Note that if

knowledge approach Decision network (under tap Knowledge) is selected in conjunction with

Structure learning, then the generated file will be a BDN, instead of a BN, named

GeNIe_BDN.xdsl. For some examples, see subsection 7.3.

6.2. Converting a learned graph into a Bayesian network model in AgenaRisk

Note that, as of Bayesys v3.01, the AgenaRisk functions are not working due compatibility

issues with the new version of AgenaRisk Developer license which requires active license and

internet connection.

This step requires that you download and install the AgenaRisk software from

www.agenarisk.com. If you are an AgenaRisk user license holder, you should download the

relevant version appropriate for your license. Alternatively, you could try the 14-day trial

Desktop version which can be downloaded from https://www.agenarisk.com/agenarisk-free-

trial

An AgenaRisk BN model can be generated by selecting Generate BN model and the

subprocess AgenaRisk, both of which can be found under tab Main. This method also requires

the input files trainingData.csv in folder Input and DAGlearned.csv in folder Output, and can

be performed with or without Structure learning. The output of this process will be a file called

AgenaRisk_BN.cmp in folder Output, and which can be loaded into the AgenaRisk software.

Note that the AgenaRisk BN model generator is based on AgenaRisk’s SDK 6120. For an

example, see subsection 7.4.

https://www.bayesfusion.com/downloads/
http://www.agenarisk.com/
https://www.agenarisk.com/agenarisk-free-trial
https://www.agenarisk.com/agenarisk-free-trial

27

7. Worked example: Structure learning, evaluation, and

parameterisation of a BN model.

The example illustrated in this section is based on the HC algorithm and the ASIA network

with data sample size 10k. The data file can be found in folder Sample input files/Structure

learning, in the main directory of the NetBeans project. These sample files are taken from the

Bayesys data repository [9].

7.1. Structure learning

Copy the two ASIA files DAGtrue_ASIA.csv and trainingData_ASIA_10k.csv (from the

Sample input files folder) in folder Input, and rename them into DAGtrue.csv and

trainingData.csv respectively. Keep in mind that the file DAGtrue.csv is needed only for the

Evaluation step described in subsection 7.2.

Run Bayesys and under tab Main select Structure learning, set the algorithm to HC (default

selection). If you are on Windows OS, also tick Save learned graph/s as PDF in the algorithm’s

folder; leave this unticked if on Mac OS, as this function would return an error due to

compatibility issues (see (iii) below for an alternative solution). Hit Run. You should see the

output depicted in Figure 7.1 in the terminal window of NetBeans.

Note that the ‘BUILD’ time shown in the output corresponds to the time the application

was building and running (i.e., from the time we hit the run button until the application

is closed), and includes the time taken by the user to select the different features to be executed.

As shown in Figure 7.1, the actual Structure learning elapsed time (i.e., the time needed by

the algorithm to learn a graph) in this example was 0 seconds.

Figure 7.1. The output information generated in the terminal window of NetBeans IDE after performing structure
learning with HC on the ASIA network, using the sample data set with 10k sample size. The output information is
based on Bayesys v3.3.

28

The previous process should have also generated the following files:

i. DAGlearned.csv in folder Output, as shown in Figure 7.2.

Figure 7.2. The edges recorded in the DAGlearned.csv file based on Bayesys v3.3.

ii. CPDAGlearned.csv in folder Output, as shown in Figure 7.3.

Figure 7.3. The edges recorded in the CPDAGlearned.csv file based on Bayesys v3.3.

iii. HC.pdf in directory Output/HC, shown in Figure 7.4. If you are working on

MAC/Linux OS, the DAGlearned.pdf file is likely to be corrupted, or fail to generate

and return an error, due to compatibility issues. You can use an online Graphviz editor,

such as the one available here: https://edotor.net/. This editor turns a textual
representation of a graph into a visual drawing. Using the code shown below, which

corresponds to the relationships recorded in DAGlearned.csv, should produce the same

graph as in Figure 7.4.

digraph {

 asia -> tub

 tub -> either

 smoke -> lung

 smoke -> bronc

 lung -> either

 bronc -> dysp

 either -> xray

 either -> dysp

 }

https://edotor.net/

29

Figure 7.4. The DAG generated in file HC.pdf based on Bayesys v3.3.

7.2. Evaluate graph

The Evaluate graph method can be performed together with Structure learning, or on its own.

Since we have already performed the structure learning process at the previous step, we will

now only run Evaluate graph. Recall that the file DAGtrue.csv, which is needed for this step,

was added in folder Input during the previous step described in subsection 7.1.
Run Bayesys and select Evaluate graph under tab Main, and then select all four Save…

options under Evaluate graph. Move to tab Evaluation, and notice that all evaluation metrics

are selected by default. Go back to Main tab and hit Run. Figure 7.5 presents the information

you should see in the terminal window of NetBeans.

Lastly, this process should have also generated four PDF files corresponding to each of

the four options ticked under Evaluate graph. As before, the PDF files might be corrupted, or

fail to generate and return an error, if you are running this on a MAC. The four files are:

iv. DAGtrue.pdf in folder Input, as shown in Figure 7.6a.

v. CPDAGtrue.pdf in folder Input, as shown in Figure 7.6b.

vi. DAGlearned.pdf in folder Output, as shown in Figure 7.7a.

vii. CPDAGlearned.pdf in folder Output, as shown in Figure 7.7b.

Notice that, in this case, the learned graphs are identical to the true graphs. This can

occasionally happen (i.e., an algorithm would perform that well) when the network is simple

and the input data are both sufficient and clean.

30

Figure 7.5. The output information generated in the terminal window of NetBeans after running the Evaluate graph
method. The output is based on the ASIA 10k sample size example using Bayesys v3.3.

31

Figure 7.6. The true DAG (left) and true CPDAG (right) graphs generated in folder Input. The outputs are based on
Bayesys v3.3.

Figure 7.7. The learned DAG (left) and learned CPDAG (right) graphs generated by the HC algorithm in folder Output,
when applied to the ASIA networks with 10k sample size. The outputs are based on Bayesys v3.3.

32

7.3. Generate BN model in GeNIe

Rerun Bayesys and this time select Generate BN model under tab Main, then select GeNIe

(default selection). As with Evaluation, this method can be performed with or without Structure

learning, as long as the trainingData.csv and DAGlearned.csv files are present in folders Input

and Output respectively. Click Run. Bayesys will then generate the BN model file

GeNIe_BN.xdsl in folder Output. Figure 7.8 presents the relevant output information generated

in the terminal window of NetBeans IDE.

Figure 7.8. The output information generated in the terminal window of NetBeans IDE after running the Generate BN
model method, with GeNIe set as the preferred BN file extension. This output is based on Bayesys v2.3.

Once you load the learned BN file GeNIe_BN.xdsl in GeNIe, you will be presented with

what is shown in Figure 7.9, where the nodes are placed on top of each. To rearrange the nodes,

click Layout, then Graph Layout, then Parent Ordering and click OK. Then, click Layout, then

Graph Layout, then Spring Embedder and click OK. To show the probability distributions

corresponding to each node, click Update (the yellow thunder icon on the top bar of UI). The

result of these steps is shown in Figure 7.10. For further details, refer to the GeNIe modeller

user manual [13].

For troubleshooting and things to know in relation to the GeNIe BN model generator

implemented in Bayesys, refer to subsection 13.6.

Figure 7.9. The BN model we see when we first load GeNIe_BN.xdsl in GeNIe. The nodes need to be arranged.

33

Figure 7.10. The BN model of Figure 7.9 after arranging the nodes and making visible the probability distributions.

7.3.1. Generate BDN model in GeNIe

To generate a BDN, instead of a BN, repeat the steps described in subsection 7.3, but this time

together with Structure learning, and select the knowledge approach Decision network under

tab Knowledge. Before you do that, place the file constraintsBDN.csv, depicted in Figure 7.11

and available in directory Sample input files/Knowledge/BDNs, in folder Input. The specified

decision and utility nodes are selected purely for illustration purposes. Running Bayesys should

now generate the file GeNIe_BDN.xdsl (note the difference from BN to BDN in the filename).

Figure 7.11. The constraintsBDN.csv file used as input for method Decision network.

Figure 7.12 presents the BDN after loading GeNIe_BDN.xdsl in GeNIe and rearranging

the nodes. Observe that, compared to the graph depicted in Figure 7.10, a) the node lung has

been converted into a decision node, b) the conditional arc from smoke entering lung has

changed into an informational arc, and c) the node dysp has been converted into a utility node.

34

Figure 7.12. The BDN after loading GeNIe_BDN.xdsl in GeNIe, converted from the BN model in Figure 7.10 and
with reference to the decision and utility nodes specified in Figure 7.11.

Lastly, Figure 7.13 compares the Conditional Probability Table (CPT) of node dysp in

the BN of Figure 7.10, to the CPT of utility node dysp in the BDN of Figure 7.12. Observe

that the values in utility dysp correspond to the conditional probabilities of state “no” in chance

node dysp, and this is because the state “no” is set as the maximisation state in

constraintsBDN.csv, as it can be seen in Figure 7.11.

(a) Chance node dysp in the Asia BN of Figure 7.10.

(b) Utility node dysp in the Asia BDN of Figure 7.12.

Figure 7.13. (a) The CPT of chance node dysp in the BN of Figure 7.10; (b) the CPT of utility node dysp in the BDN of
Figure 7.12, where state “no” is set as the maximisation value as shown in Figure 7.11.

For troubleshooting and things to know regarding the GeNIe BDN model generator

implemented in Bayesys, refer to subsection 13.6.

35

7.4. Generate BN model in AgenaRisk

Note: The AgenaRisk functions are no longer compatible with the new version of AgenaRisk

which requires active license and internet connection.

Rerun Bayesys and select Generate BN model under tab Main, and then unselect the default

selection GeNIe and select AgenaRisk instead. As with Evaluation, this method can be

performed with or without Structure learning, as long as the trainingData.csv and

DAGlearned.csv files are present in folders Input and Output respectively. Click Run. Bayesys

will then generate the BN model file AgenaRisk_BN.cmd in folder Output. Figure 7.14 presents

the relevant output information generated in the terminal window of NetBeans IDE.

Figure 7.14. The output information generated in the terminal window of NetBeans after running the Generate BN
model method, with AgenaRisk set as the preferred BN file extension. This output is based on Bayesys v2.3.

Once you load the AgenaRisk_BN.cmd in AgenaRisk, you will be presented with what

is shown in Figure 7.15. To view the learned BN model and its probability distributions, click

and expand Model which can be found within the Risk Explorer window on the left, and then

click on New Risk Object (as can be seen in Figure 7.15). Then, click on the Run calculation

button (green play button in UI) to update the distributions. To view the distributions, use your

mouse cursor to select all nodes, and double click on one of the nodes. The result of these steps

is shown in Figure 7.16.

Lastly, Figure 7.17 presents the graph shown after rearranging the nodes, modifying

the size of the nodes, and changing the type of the probability distributions from vertical to

horizontal. For further details, refer to the AgenaRisk user manual that comes with the

AgenaRisk Desktop version.

36

Figure 7.15. The BN mode we see once we load AgenaRisk_BN.cmp in AgenaRisk. The nodes need to be made
visible.

Figure 7.16. The BN model of Fig 6.15 after using Risk Explorer to view the nodes.

Figure 7.17. The BN model of Fig 6.16 after rearranging the nodes, modifying the size of the nodes, and changing the
type of the probability distributions shown for each node.

37

8. Worked examples: Structure learning with knowledge-based

constraints

Ensure you have read Section 4 and went through Section 7 before going through this section.

The worked examples presented in this section are based on the SPORTS network. The data

used to illustrate these examples can be found in project directory Sample input files/Worked

SPORTS example from the manual. To repeat the examples, copy all those files in folder Input.

NOTE: The knowledge constraints selected here are purely for illustration purposes. The aim

is to try to ‘correct’ the learned graphs by selecting constraints that are present in the true graph

but absent in the learned graph.

Example 1: No knowledge

Run Bayesys with HC selected as the structure learning algorithm (default selection). Tick

Evaluate graph as well its third subprocess called Save learned DAG… . Figure 8.1a shows

the true DAG of SPORTS whereas Figure 8.1b shows the DAG learned by HC with 1,000

samples, before incorporating any knowledge. Notice that the F1 score under CPDAG metrics

is 0.5, since the learned graph has missed many edges that are present in the true graph.

All subsequent examples incorporate knowledge-based constraints, and are discussed

with reference to the graph in Figure 8.1b which is learned from data.

Figure 8.1. The a) true DAG of the SPORTS network and b) the DAG learned by HC with 1,000 samples before
incorporating any knowledge. The outputs are based on Bayesys v3.3 (Note: output may be slightly different in v3.6
or later).

38

Example 2: Directed edge constraints

Repeat the learning process as in Example 1, but this time also select Directed under tab

Knowledge. The learning process will now consider the directed edge constraints specified in

constraintsDirected.csv. These are HTshotOnTarget→HTgoals and ATshotsOnTarget→
𝐴Tgoals, and they represent two edges that are present in the true graph but absent in the

learned graph shown in Figure 8.1b. Notice that the terminal window in NetBeans indicates

the number of constraints taken into consideration during the structure learning process; i.e., in

this example, it should state:

____________________ Knowledge-based constraints ____________________
Directed edge constraints specified: 2

Figure 8.2a presents the graph learned at this step. Notice that while the constraints

have been successfully imposed, they have also caused modifications to other parts of the

graph. The revised graph now produces an F1 score of 0.75 for the CPDAG output, up from

0.5 without constraints, and this suggests that the knowledge constraints have helped the

algorithm to discover a graph that is closer to the true graph (unsurprisingly, since we know

the constraints are correct).

Example 3: Undirected edge constraints

Repeat the same process and this time select Undirected (instead of Directed) under tab

Knowledge. The learning process will now consider the undirected edge constraints specified

in constraintsUndirected.csv. The constraints are the same as in Example 2, but they are now

imposed as undirected, rather than directed, edges; i.e., HTshotOnTarget−HTgoals and

ATshotsOnTarget−𝐴Tgoals.

Figure 8.2b presents the graph learned at this step. This graph produces an F1 score of

0.583 for the CPDAG output, up from 0.5 without constraints, but lower than 0.75 which was

achieved in Example 2 with the same edges imposed as directed constraints.

Figure 8.2. The SPORTS network DAGs learned by HC with directed (left) and undirected (right) constraints. The
outputs are based on Bayesys v3.3 (Note: output may be slightly different in v3.6 or later).

39

Example 4: Forbidden edge constraints

Repeat the same process and this time select Forbidden under tab Knowledge. The learning

process will now consider the forbidden edge constraints specified in

constraintsForbidden.csv. These are HTshotOnTarget→HDA and HTgoals→ATgoals, since

those two edges are present in the learned graph but not in the true graph.

Figure 8.3a presents the graph learned at this step. Notice that this time the constraints

were enforced with minor effect to other parts of the graph. The F1 score for the CPDAG has

increased (relative to Figure 8.1b) from 0.5 to 0.522.

Example 5: Temporal constraints

Repeat the same process and this time select Temporal together with its subprocess Prohibit

edges between variables of the same tier, under tab Knowledge. The learning process will now

consider the temporal constraints specified in constraintsTemporal.csv. These are depicted in

Table 8.1, and aim to correct the orientations between HDA and ATgoals and HTgoals

variables, but also to eliminate the edge between the latter two variables consistent with the

true graph.

Figure 8.3b presents the graph learned at this step. The output is identical (by chance)

to that of Example 2 which involved directed edge constraints. Notice how the graph has been

modified to satisfy the parental and ancestral relationships consistent with the temporal

orderings described in Table 8.1. The nodes HTgoals and ATgoals are now unconnected since

they are part of the same tier in Table 8.1; i.e., recall we have selected to Prohibit edges

between variables of the same tier.

Table 8.1. The temporal constraints considered in Example 5.

ID Tier 1 Tier 2
1 ATgoals HDA
2 HTgoals

Figure 8.3. The SPORTS network DAGs learned by HC with a) forbidden and b) temporal constraints. The outputs are
based on Bayesys v3.3 (Note: output may be slightly different in v3.6 or later).

40

Example 6: Initial graph

Repeat the same process and this time select Initial graph under tab Knowledge. The learning

process will now consider the edges specified in constraintsGraph.csv as being present in the

initial graph from which the algorithm will start exploring the search space of DAGs. The

constraints considered in this example are the same two edges as in Example 2 and Example

3, and the effect on the learned graph appears to be the same as in Example 2 and Example 5

(but this will not always be the case, especially in larger networks).

Example 7: Target node

Repeat the previous process and this time select Target nodes with the Penalty reduction (𝑟)

hyperparameter set to 10, under tab Knowledge. Increasing the Penalty reduction (𝑟) parameter

makes it more likely to draw more edges entering targeted nodes. The learning process will

now consider the nodes specified in constraintsTarget.csv as nodes targeted for relaxed

dimensionality penalty, to encourage the algorithm to discover a higher number of parents for

those nodes. The seven nodes targeted are those that have two parents in the true graph shown

in Figure 8.1a, since the algorithm tends to return just one parent for almost all those nodes.

Figure 8.4 presents the graph learned at this step. Notice how the number of edges has

increased. However, not all the newly added edges are correct. Overall, the F1 score for the

learned CPDAG has increased from 0.5 to 0.563.

Figure 8.4. The SPORTS network DAG learned by HC with targeted node constraints. The output is based on Bayesys
v3.3 (Note: output may be slightly different in v3.6 or later).

41

9. Worked example: Performing multiple structure learning

experiments

Often, we need to run multiple algorithms on a single data set, apply an algorithm to multiple

data sets, or a combination of both. The steps enumerated below illustrate how to do this in

Bayesys.

STEP 1: Prepare the necessary files

For this illustration, we will be using the sample files available in directory Sample input

files/Multiple inputs. The folder contains the following files:

i. Five true graphs, called DAGtrue_ALARM.csv, DAGtrue_ASIA.csv, etc,

ii. Ten data sets, two for each of the five true graphs, with sample sizes 103 and 104, called

trainingData_ALARM_1k.csv, trainingData_ALARM_10k.csv, etc,

iii. A file containing the details of the experiments, called settings.csv. This file contains

40 experiments. Figure 9.1 presents the first 14 experiments, where the first column

specifies the algorithm that should be used for structure learning, the second column

the data set, and the third column the true graph. The remaining columns specify

whether any knowledge-based constrains are to be considered for each knowledge

approach, where each knowledge approach requires its own data set (refer to Section

4). In this illustration, we will not be considering the knowledge approaches, which is

why all relevant values are set to FALSE in Figure 9.1.

Copy all the above files in the following input directory Input/Multiple inputs.

Figure 9.1. Part of the contents of the sample input file settings.csv. This input file is based on release Bayesys v3.3
(Note: output may be slightly different in v3.6 or later).

42

STEP 2: Running Bayesys

Run Bayesys. Under tab Main, click on Structure learning and select Multiple algorithms

and/or data sets using the dropdown menu next to Algorithm. Hit run.

Bayesys will spend around five minutes executing the 40 structure learning experiments

specified in settings.csv. We can view the progress of structure learning by referring to the

terminal window of NetBeans IDE. Figure 9.2a and Figure 9.2b present the output information

generated for the first two, out of 40, experiments. The output information is the same as that

generated when performing structure learning manually with one algorithm and data set at a

time. The only additional information shown during this process involves the number of

experiments, which are highlighted in Figure 9.2.

Figure 9.2. The output information generated in the terminal window of NetBeans IDE regarding the first two, out of
the 40, experiments specified in file settings.csv. The outputs are based on Bayesys v3.2 (Note: output may be
slightly different in v3.6 or later).

43

STEP 3: Reading the results

• The results are generated in the file called resultsMultiInput.csv, and this file is

generated in folder Output.

• The file resultsMultiInput.csv is updated after each experiment is completed. In this

example, there are 40 experiments. Therefore, the output file resultsMultiInput.csv will

be updated 40 times.

• If you are running experiments that take hours to complete and would like to view the

contents of resultsMultiInput.csv during structure learning, you should create a copy of

this file and view the copied version. Do not open the resultsMultiInput.csv file during

the structure learning process, as this might cause the system to return an error.

• Because resultsMultiInput.csv is updated iteratively, we can stop structure learning

whenever we wish and save the results generated up to that point; e.g., by creating a

copy of resultsMultiInput.csv. We can then remove the completed experiments from

the settings.csv file, so that we do not repeat those experiments next time we resume

structure learning.

• Figure 9.3 presents the results generated in file resultsMultiInput.csv. The first column

lists the experiment number, and the columns 𝐵 to 𝐾 are copies of the corresponding

columns specified in settings.csv. The remaining columns provide all the results we can

possibly need, and these include the graphical scores for both DAGs (columns 𝑁 to 𝑅)

and CPDAGs (columns 𝐴𝐵 to 𝐴𝐹).

Note that columns 𝑈 to 𝑌 provide pruning information that is only relevant to

the MAHC algorithm. As shown in Figure 9.3, these values are set to n/a whenever a

different algorithm is used for a particular experiment.

44

Figure 9.3. The results generated in output file resultsMultiInput.csv with reference to the 40 experiments specified in file settings.csv. The output is based on Bayesys v3.3 (Note:
output may be slightly different in v3.6 or later).

45

10. Worked example: Model-averaging

In addition to investigating the graphs learned by the algorithms independently, we may also

want to use a model-averaging approach to obtain some sort of an averaged graph over a set of

independent graphs. In Bayesys, this can be done through the model-averaging method

highlighted in Figure 10.1.

This method takes a CSV file as input containing the edges (including duplicates) across

a number of graphs. In constructing the model-averaging graph, this process prioritises directed

edges over undirected edges, under the assumption that a directed edge carries higher certainty

than an undirected edge, and so it aims to orientate as many edges as possible. Bi-directed

edges are ignored since they indicate independence due to confounding, similarly to how the

absence of an edge indicates independence. The model-averaging process works as follows:

i. Add directed edges to the model averaging graph, starting from highest occurrence;

a. Skip edge if already added in reverse direction;
b. Skip edge if it produces a cycle, reverse it and add it to edge-set C;

ii. Add undirected edges starting from highest occurrence;
a. Skip edge if already added as directed;

iii. Add directed edges found in C starting from highest occurrence;
a. Skip edge if already added as undirected.

The hyperparameter shown in Figure 10.1 is optional. It enables the user to specify the

minimum number of occurrences needed for an edge to be added to the model averaging graph.

Figure 10.1. The Model-averaging method available under tab Main in Bayesys v3.5.

46

For a worked example, follow the steps enumerated below which involve generating the model-

averaging graph All_score-based, as described in [14]. The input data file represents a set of

graphical structures learned by applying different structure learning algorithms to a COVID-

19 UK data set.

STEP 1: Preparing file and directory.

For this illustration, we will be using the sample file available in directory Sample input

files/Model-averaging. Copy the file ALL_score-based.csv in directory Input/ and rename the

file to modelAveragingGraphs.csv. A screenshot of the data contained in this file is shown in

Figure 10.2.

Figure 10.2. Part of the contents of the sample input file modelAveragingGraphs.csv.

STEP 2: Running Bayesys.

Run Bayesys. Under tab Main, click on Generate model-averaging graph. Set the

hyperparameter to 10, to be consistent with the results reported in [14]. That is, the input file

contains a set of edges corresponding to 30 different structure learning experiments. Setting

the hyperparameter threshold to 10 implies that the model-averaging graph will consider edges

that appeared in at least one third of the 30 structure learning experiments. Hit Run.

STEP 3: Reading the results.

The output involves the files Model_averaging_graph.pdf and modelAveragingGraph.csv,

generated in folder Output. Both files contain the same information, in a different format.

Figure 10.3 presents the model-averaging graph generated in the PDF file.

47

Figure 10.3. The All_score-based model-averaging graph generated through the worked example, which is based on
an experiment described in [14]. The graph contains a total of 29 edges, where the edge labels represent the number
of times the given edge appeared in the input data (i.e., in the 30 independent graphs considered as input), and the
width of the edges increases with this number.

48

11. Generate synthetic data

11.1. Generate clean data

The method Clean data is independent of other methods and can be used to generate clean

synthetic data from a given BN model. Selecting Generate synthetic data under tab Main

activates tab Generate data, along with its three sub-tabs as shown in Figure 11.1. This method

requires DAGtrue.csv and trainingData.csv (to learn the CPTs) in folder Input, and the user to

specify the required sample size as shown in Figure 11.1. After you run and complete the

process, you should find the output file trainingDataClean.csv in directory Output/Synthetic

data/Clean.

Figure 11.1. Features of tab Clean data, which is activated after selecting Generate synthetic data under tab Main.
This illustration is based on Bayesys v3.01.

11.2. Generate noisy data

The tab Noisy data was implemented in Bayesys as part of the empirical evaluation assessments

in [5]. Unlike Clean data, this method requires only trainindData.csv in folder Input, and

produces all output files in directory Output/Synthetic data/Noisy.

Three types of data noise are can be simulated, independently or in combinations of

two, as shown in Figure 11.2. For example, selecting two types of data noise under

Independent noise data sets should produce two different noisy data sets, one for each type of

data noise, whereas selecting two types of data noise under Combined noise data set will

produce a single data set that incorporates both types of data noise selected. You could combine

all three types of data noise into a single data set by repeating this process multiple times, and

replacing trainindData.csv with the resulting noisy file at each iteration.

49

The filename of the output file depends on the types of noise selected as well as the

associated parameters (see Figure 11.2) which represents the rate of noise; e.g., parameter 0.05

implies each data point will have 5% chance of being manipulated. For example, selecting

noise 𝑀 with parameter 0.05 will produce the filename trainingData_M5, whereas selecting

both 𝑀 and 𝐼 will produce the filename trainingData_MI5. Figure 11.3 presents the output we

get in the terminal window of NetBeans after running Data noise on the ASIA network data

set with 10k sample size, and selecting 𝑀 and 𝐼 under Combined noise data set with the rate of

noise set to 0.05.

Figure 11.2. The different types of data noise that can be simulated, found under tab Noisy data, which is activated
after selecting the method Generate synthetic data under tab Main. This illustration is based on Bayesys v2.5.

Figure 11.3. The output information generated in the terminal window of NetBeans IDE after selecting data noise 𝑀
and 𝐼, with parameter set to 0.05 for both cases, to be performed on the ASIA network data set with 10k sample size.
This illustration is based on Bayesys v1.7.

50

12. Generate MAG

A MAG (i.e., Mixed Ancestral Graph) is an extension of a DAG that captures latent

confounders. The method Generate MAG was implemented in Bayesys as part of the empirical

evaluation assessments in [5], and can be performed independent of other methods.

Generate MAG requires three input files: a) DAGtrue.csv, b) trainindData.csv, and c)

trainingDataMAG.csv, all present in folder Input. The input file trainingDataMAG.csv can be

viewed as a copy of trainingData.csv minus the variables that are assumed to be latent/missing.

For example, if trainingData.csv contains variables {𝐴, 𝐵, 𝐶, 𝐷, 𝐸}, and trainingDataMAG.csv

variables {𝐴, 𝐶, 𝐷, 𝐸}, then the system will produce the MAG of DAGtrue.csv in which variable

𝐵 is latent.

Running Generate MAG produces two output files in directory Output/MAG. These are

MAGtrue.csv and MAGtrue.pdf. Both outputs capture the same information; i.e., MAGtrue.csv

captures the edges present in the MAG, whereas MAGtrue.pdf draws the MAG with edge

revisions highlighted relative to the true DAG. Figure 12.1 and Figure 12.2 are taken from [5]

[9] and present the true DAG of the Alarm network along with its corresponding MAG when

two variables are missing.

Figure 12.1. The true DAG of the Alarm network. Number of variables: 37. Number of arcs: 46. The illustration is
based on Bayesys v1.7.

51

Figure 12.2. One of the true MAGs of the Alarm network used in [5] [9]. Number of variables: 35. Number of edges:
46. Missing variables: LVFAILURE, SHUNT. Blue arcs and red bi-directed edges represent edges that are not present
in the true DAG. The illustration is based on Bayesys v1.7.

52

13. Troubleshooting and things to know

13.1. Input data files

• Variable and state names should not include a comma. This is because the data is read

as Comma Separated Values (CSV), which means that the system automatically

considers a comma as a data value separator.

• Variable names should not start with a numeric value.

• Any variable names specified as knowledge-based constraints (e.g., in

constraintsTemporal.csv) should match (case sensitive) the variable names specified

in trainingData.csv.

13.2. While running the system

• Before you run a method in Bayesys, make sure that you close ALL the relevant

output files. If an output file remains open while running Bayesys, the system might

complete the process without returning an error, but will not update the output file

running in the background. For example, if you run Structure learning and the file

DAGlearned.csv is already present in folder Output and is open in Excel, the learning

process will complete but will not update DAGlearned.csv.

13.3. NetBeans terminal output errors

• ERROR: “I/O error while writing the dot source to temp file!”. This error associates

with the PDF graphs generated when calling the Graphviz library. This error occurs

when a PDF file being generated by Bayesys is already present in that folder but

might be in use by the OS. However, you may sometimes get this error for no

apparent reason. When you get this error, check that the relevant PDF files have been

updated correctly during structure learning (refer to Time modified). Alternatively,

rerun the process and, if it was not due to the PDF file being open, the error is unlikely

to appear during the second run.

• ERROR: “Invalid maximum heap size: -Xmx25000m. The specified size exceeds the

maximum representable size.”. This might be because you have installed the 32-bit

version of NetBeans. You will have to install the 64-bit version (and the

corresponding 64-bit JDK version).

• ERROR: “java.lang.OutOfMemoryError: Java heap space”. Memory issues may

occur when working with large data sets, or when parameterising enormous CPTs.

For example, if you use knowledge-based constraints to force directed edges entering

specific nodes, Bayesys will accept up to 11 parents per node. However, a node

having 11 parents may produce a CPT size of billions or trillions of parameters, and

which may cause an out-of-memory error.

13.4. Warnings

• Red coloured warning messages such as "WARNING: The LL implementation is

limited to max node in-degree 8. A graph with max node in-degree >8 has been

53

skipped during score-based learning" and “WARNING: Variable variableName has

more than 20 states” are informational only and do not indicate an error.

13.5. Computational time

• Large graphs with hundreds of variables increase computational time faster than

linear. The computational time of an algorithm is also heavily dependent on the

sample size of the input data. Keep in mind that generating graphs in PDF that contain

hundreds of variables and/or edges may also significantly contribute to the overall

computational time.

13.6. BN model generator (GeNIe)

• ERROR: “Arc rejected by child node” (full error output shown in Figure 13.1). This

error is generated in the Output window of GeNIe when the Bayesys generated XDSL

file contains a Utility node serves as a parent of a chance node. This is because, in

GeNIe, children of Utility nodes can only be MAU/ALU nodes (refer to the GeNIe

manual [13]). One way of resolving this issue is to make use of the Temporal

constraints and add all Utility nodes in Tier 2, for example, and all other nodes in
Tier 1, to ensure that the learned graph will comply with the graphical restriction in

GeNIe.

Figure 13.1. The error generated in GeNIe when the XDSL file contains Utility nodes that are parents of chance
nodes. In this example, note that the error also states that the problem can be found in line-of-code 529, at character
position 4.

• Because GeNIe replaces many non-alphabetic values (including single integers) with

characters “x” and “_”, it is recommended that you replace integer state values with

words (e.g., by changing state “1” to “one”); otherwise, you will not be able to

differentiate these states in GeNIe.

54

Appendix A: Revision notes

Old revision notes may point to sections, figures and tables that have had their numbering changed in future

revisions, or to information that might no longer be available in the latest document.

v1.5 Main revision notes – Feb 2020:

• The way Precision score is computed has been revised (this also influences the F1 score).

• The Evaluate graph method now gives the option to the user to generate DAGlearned.pdf, corresponding

to the graph of DAGlearned.csv.

• A new main method has been added, called Add noise to data (refer to Section 11).

• A new main method has been added, called Generate MAG (refer to Section 12).

• SaiyanH will infrequently fail to orientate all edges during phase 2. When this happens, the orientation

of the edges will be randomised. The terminal window of NetBeans now outputs this information.

v1.6 Main revision notes- Mar 2020:

• DAGlearned.pdf generator, under method Evaluate graph, is now optional and supports edges “o→” and

“o−o”.

• The number of independent graphical fragments is now represented by an independent evaluation

method, under tab Evaluation, and requires trainingData.csv present in folder Input to run.

v1.7 Main revision notes - May 2020:

• Improvements have been made to the code that reads data from CSV files. Bayesys should now

automatically resolve the following issues while reading CSV data:

o Error caused by data sets with excess commas, often caused due to heavy file editing.

o Error caused by data sets that incorporate hidden values. These values were neither visible in CSV

format, nor in TXT format, nor readable in String code JAVA format. This type of data corruption

is often caused by the formatting style of the source from which data are copied into a file.

• The system now stops the structure leaning process if the input data set is found to incorporate missing

data values (i.e., empty data cells), and informs the user in the terminal window of NetBeans.

• The system now stops the structure leaning process if the name of a variable starts with a numeric

character, and informs the user in the terminal window of NetBeans.

• The system now warns the user, in the terminal window of NetBeans, when the name of a variable in

DAGlearned.csv does not match any of the variable names in DAGtrue.csv.

• The system now warns the user, in the terminal window of NetBeans, when a variable contains more

than 20 states.

• Corrected a bug in the computation of the BIC score.

• The Evaluation now returns F1=0 when F1=NaN; i.e., in the case of Recall = Precision = 0.

• The runtime information for SaiyanH now includes the time spent in each of the three learning phases of

SaiyanH.

• A correction has been made to the function that outputs information about the number of nodes present

in DAGtrue.csv.

v2.0 Main revision notes – Nov 2020:

• Improved the computational efficiency of score-based learning, constraint-based learning, and cycle

detection. These revisions have improved the learning speed of SaiyanH by approximately 2.38 times

(refer to subsection 3.1 for details).

• Bug fixes have slightly improved the learning accuracy of SaiyanH (refer to subsection 3.1 for details).

• Implemented two score-based structure learning algorithms based on traditional heuristics; namely the

Hill-Climbing (HC) and TABU algorithms.

• All structure learning implementations now restrict the search space of graphs to max in-degree eight.

• The UI has gone through modifications to support the new implementations.

• SaiyanH will no longer produce an edge between variables that produce 0 association. This can happen

when a variable in the data consists of just one state.

• Score-based learning and structure learning evaluation can now be performed with different log scales

for the objective BIC function.

• The Evaluation method now includes information about the Log-Likelihood score, and whether the

learned graph is acyclic (refer to Fig 5.4).

• Graphs generated in PDF now include disjoint nodes with no parents or children.

55

• Different types of knowledge-based constraints can now be incorporated into the structure learning

process (refer to Section 4).

v2.2 Main revision notes – Jan 2021:

• Implemented additional knowledge-based constraints and revised Section 4 accordingly. More details

about the knowledge-based constraints can be found in [6].

• Fixed a null exception bug that occasionally occurred when trying to perform BIC evaluation on a given

DAGlearned.csv without previously running Structure learning.

v2.3 Main revision notes – Fen 2021:

• Extended the BN model generator method to support GeNIe BN models (in addition to AgenaRisk BN

models), with file extension XDSL. For details, refer to subsection 6.1. For an example, refer to

subsection 7.3. For troubleshooting and things to know, refer to subsection 13.6.

• Updated the set-up instructions of Section 1. Links to the appropriate Java JDK and NetBeans versions

have also been updated.

v2.4/2.41/2.421 Main revision notes – Feb/Mar 2021:

• Fixed a bug during Evaluate graph where the system would return an error for BIC calculation, despite

BIC not being selected under the Evaluation tab. Moreover, unselecting BIC now automatically disables

the subprocess for the LL score.

o Fixed a subsequent bug in v2.41 that sometimes caused the system not to output inference-based

evaluation scores in the terminal window of NetBeans.

• Fixed a UI bug; now checkbox ‘Save graphs’ is always enabled irrespective of the algorithm selected.

• Updated the set-up instructions of Section 1.

v3.01 Main revision notes – Oct 2021:

• Fixed a UI bug: BIC selection under tab Evaluation now correctly modifies the BIC selection for the

structure learning algorithms.

• BIC score comparisons are no longer truncated to two decimal points.

• BIC scores can now be computed for both DAGs and MAGs (refer to Section 5).

• Fixed a bug that occurred during the GeNIe model generating process and caused a “node position” error

when loading the models in GeNIe versions older than version 3.

• The GeNIe XMLS generator now automatically replaces special characters that cause an error in the

terminal window of GeNIe, when loading the learned models into GeNIe.

• The Evaluate graph process now enables users to generate PDFs of the true DAG and CPDAG in folder

Input, and of the learned DAG and CPDAG in folder Output.

o When the option Saved learned DAG as PDF… under Evaluate graph is combined with the

Decision network process under tab Knowledge, the generated graph will now be a Bayesian

Decision Network named BDNlearned.PDF, instead of a DAG named DAGlearned.pdf. This

process takes into consideration both the DAGlearned.csv and constraintsBDN.csv files (refer to

Fig 3.6) and Section 5.

• Added a new process that enables users to generate clean synthetic data from BN models. The UI

involving the Noisy data generator process has been modified to include this new process. For details,

refer to subsection 11.

• Fixed a bug that caused the Reverse arc operation during structure learning to violate some of the

knowledge-based constraints.

• Fixed a bug that caused SaiyanH to violate the maximum node in-degree during Phase 2. This fix will

cause SaiyanH to sometimes not carry an edge from Phase 1 into Phase 2, due to the maximum in-degree

parameter input which is set to 8 by default.

• Implemented the new score-based Model-Averaging Hill-Climbing (MAHC) structure learning

algorithm (refer to subsection 3.1 and relevant paper [7]).

v3.2/3.21 Main revision notes – Jan 2022:

• Made minor revisions to the way score comparisons are generated between the learned DAG and true

DAG, and between the learned CPDAG and true CPDAG. The detailed evaluation criteria can be found

in Table 5.1 and Table 5.2 for DAGs and CPDAGs respectively.

56

• Modified the HC and TABU algorithms to be able to explore the CPDAG space, in addition to the DAG

space. The naming of the algorithms has changed to reflect this change; i.e., HC_DAG, HC_CPDAG,

TABU_DAG, and TABU_CPDAG. The UI and the manual have also been modified accordingly.

• Minor bug corrections might have marginally influenced the learning performance of some algorithms.

Refer to the new Table 3.1 for the accuracy scores and learning times for each algorithm available in

Bayesys v3.2, with reference to the six BNs available in the repository.

• Extended the manual to include a worked example on how to incorporate knowledge-based constraints.

v3.3 Main revision notes – June 2022:

• Corrected a bug that involved shielded colliders when converting a DAG into CPDAG. This has also

affected the evaluation scores under CPDAG.

• Removed the HC_CPDAG and TABU_CPDAG variants and renamed HC_DAG and TABU_DAG to

HC and TABU respectively.

o The number of max Tabu escapes for TABU algorithm is now set to |𝑉| (i.e., number of variables),

down from |𝑉|(|𝑉| − 1). This makes TABU many times faster in exchange for accuracy.

• All structure learning algorithms now read the data variables as they appear in the data set, from left-to-

right (previously data were read from right-to-left). Because the algorithms are sensitive to the order of

the variables read from data, this influences the scores of HC and TABU to a large degree, and the scores

of SaiyanH and MAHC to a small degree. For details about this issue see [10].

v3.5/3.51/3.52/3.53/3.54/3.55 Main revision notes – Mar/Apr/May/Oct 2023:

• Added the structure learning algorithm GES by Chickering [8]. Details about the implementation of this

algorithm and its performance can be found in subsection 3.1.
• Added a model-averaging approach that takes a set of graphical structures as input, and outputs a single

graph that is representative of all independent input graphs.
• Max node in-degree is now set to 11, up from 8, for all structure learning, evaluation and BN model

processes.
• Removed a process linked to AgenaRisk that involved evaluating the predictive accuracy of a given node.
• Corrected a bug that sometimes affected the edge-counts in model-averaging graphs (v3.55).
• Corrected a bug that sometimes caused the model-averaging method not to generate any edges in the

relevant CSV file (v3.55).

v3.6 Main revision notes – Jun 2024:

• Objective score BIC improvement: Restructured the computation and storage of the objective scores

to improve efficiency.

• TABU algorithm modification: Modified the way the TABU algorithm escapes local maxima. TABU

now attempts to escape local maxima by performing hill-climbing on the |V| neighbouring graphs that

minimally decrease the objective score. If a higher-scoring graph is discovered, TABU will save it as the

preferred graph and repeat the process. This modification also affects SaiyanH, which performs TABU

search during phase 3.

• MAHC pruning and TABU integration: TABU can now be combined with MAHC pruning through

hyperparameter selection.

• New case studies: Added two new case studies to the Bayesys repository: DIABETES and COVID-19

[14] [15].

• Bug fixes: Resolved a bug causing incorrect application of temporal constraints when performing

structure learning with multiple algorithms and multiple sets of temporal constraints.

57

Appendix B: Stats for nerds

Table B.1. Evolution of the Bayesys NetBeans IDE project.

Release

date
Bayesys
version

Java
classes

Lines of code
(LOC)4

Feb 2019 v1 18 5,598
Mar 2019 v1.1 19 6,806
Jun 2019 v1.2 23 8,183
Aug 2019 v1.28 25 9,367
Jan 2020 v1.4 20 9,382
Feb 2020 v1.5 22 11,469
Mar 2020 v1.6 22 11,304
May 2020 v1.7 24 13,346
Nov 2020 v2 25 14,321
Jan 2021 v2.2 29 15,490
Feb 2021 v2.3 29 16,162
Oct 2021 v3 34 20,382
Jan 2022 v3.2 34 21,699
Jun 2022 v3.3 35 23,197

Mar 2023 v3.5 37 27,154
Jun 2024 v3.6 36 27,260

Table B.2. Evolution of the Bayesys manual.

Release
date

Document
version

Page
count

Word
count

Mar 2019 v1 27 5,503
Jun 2019 v1.2 27 6,262
Aug 2019 v1.28 30 6,870
Jan 2020 v1.4 18 3,055

Mar 2020 v1.6 22 3,926
May 2020 v1.7 24 4,602
Nov 2020 v2 27 6,361
Jan 2021 v2.2 31 8,071
Feb 2021 v2.3 47 10,224
Oct 2021 v3 52 12,382
Jan 2022 v3.21 53 12,754
Jun 2022 v3.3 53 12,863

Mar 2023 v3.5 60 13,963
Jun 2024 v3.6 58 14,926

4 Include comments and unused functions.

58

References

[1] A. C. Constantinou, “Bayesian Artificial Intelligence for Decision Making under Uncertainty,” Engineering

and Physical Sciences Research Council (EPSRC), EP/S001646/1, 2018.

[2] AgenaRisk, “AgenaRisk: Bayesian Network Software for Risk Analysis and Decision Making,” 2019.

[Online]. Available: https://www.agena.ai.

[3] E. R. Gansner and S. C. North, “An open graph visualization system and its applications to software

engineering,” Software – Practice and Experience, vol. 30, no. 11, p. 1203–1233, 2000.

[4] A. C. Constantinou, “Learning Bayesian networks that enable full propagation of evidence,” IEEE Access,

vol. 8, p. 124845–124856, 2020.

[5] A. C. Constantinou, Y. Liu, K. Chobtham, Z. Guo and N. K. Kitson, “Large-scale empirical validation of

Bayesian Network structure learning algorithms with noisy data.,” International Journal of Approximate

Reasoning, vol. 131, pp. 151-188, 2021.

[6] A. C. Constantinou, Z. Guo and N. K. Kitson, “The impact of prior knowledge on causal structure learning,”

Knowledge and Information Systems, no. 65, p. 3385–3434, 2023.

[7] A. Constantinou, Y. Liu, N. K. Kitson, K. Chobtham and Z. Guo, “Effective and efficient structure learning

with pruning and model averaging strategies,” International Journal of Approximate Reasoning, vol. 151,

p. 292–321, 2022.

[8] D. Chickering, “Learning equivalence classes of Bayesian-network structures,” Journal of Machine

Learning Research, vol. 2, pp. 445-498, 2002.

[9] A. C. Constantinou, Y. Liu, K. Chobtham, Z. Guo and N. K. Kitson, “The Bayesys data and Bayesian

network repository,” Bayesian AI research lab, MInDS research group, Queen Mary University of London,

London, UK., http://bayesian-ai.eecs.qmul.ac.uk/bayesys/, 2020.

[10] N. K. Kitson and A. Constantinou, “The impact of variable ordering on Bayesian network structure

learning,” Data Mining and Knowledge Discovery, pp. https://doi.org/10.1007/s10618-024-01044-9, 2024.

[11] Y. Liu and A. Constantinou, “Improving the imputation of missing data with Markov blanket discovery,”

in In Proceedings of the 11th International Conference on Learning Representations (ICLR), Kigali,

Rwanda, 2023.

[12] A. Constantinou, “Evaluating structure learning algorithms with a balanced scoring function,”

arXiv:1905.12666 [cs.LG], https://arxiv.org/abs/1905.12666, 2019.

[13] BayesFusion, “GeNIe Modeler User Manual,” 2020. [Online]. Available:

https://support.bayesfusion.com/docs/GeNIe.pdf.

[14] A. C. Constantinou, N. K. Kitson, Y. Liu, K. Chobtham, A. Hashemzadeh, P. A. Nanavati, R. Mbuvhaa and

B. Petrungaro, “Open problems in causal structure learning: A case study of COVID-19 in the UK,” Expert

Systems with Applications, no. 234, p. Article 121069, 2023.

[15] S. Zahoor, A. Constantinou, T. M. Curtins and M. Hasanuzzaman, “Investigating the validity of structure

learning algorithms in identifying risk factors for intervention in patients with diabetes,”

https://arxiv.org/abs/2403.14327, 2024.

[16] A. C. Constantinou, “Learning Bayesian networks with the Saiyan algorithm,” ACM Transactions on

Knowledge Discovery from Data, vol. 14, no. 4, p. Article 44, 2020.

