
1

The Bayesys user manual

Anthony C. Constantinou1, 2

Version 1.711

i. Bayesian Artificial Intelligence research lab, Risk and Information Management (RIM)

research group, School of Electronic Engineering and Computer Science, Queen Mary

University of London, London, UK, E1 4FZ.

E-mail: a.constantinou@qmul.ac.uk

ii. The Alan Turing Institute, UK, British Library, London, UK, NW1 2DB.

www.agenarisk.com

1 Citation: Constantinou, A. (2019). The Bayesys user manual. Queen Mary University of

London, London, UK. [Online]. Available: http://bayesian-ai.eecs.qmul.ac.uk/bayesys/ or

http://www.bayesys.com

http://bayesian-ai.eecs.qmul.ac.uk/
mailto:a.constantinou@qmul.ac.uk
http://www.agenarisk.com/
http://bayesian-ai.eecs.qmul.ac.uk/bayesys/
http://www.bayesys.com/

2

Table of Contents

Copyright notice ... 3

Acknowledgements .. 4

Introduction .. 5

1. Getting started [with the Netbeans project] .. 6

2. Learning a Bayesian network ... 8

3. Evaluate a learned graph .. 10

4. Convert DAG into a BN model in AgenaRisk ... 13

5. Worked 3-step example: Structure Learning, Evaluation, and BN model. 14

5.1. Structure learning ... 14

5.2. Evaluate graph .. 16

5.3. Generate BN model ... 17

6. Add noise to data .. 18

7. Generate MAG ... 19

8. Troubleshooting and things to know .. 21

8.1. Input data files .. 21

8.2. While running the system... 21

8.3. Netbeans terminal output errors .. 21

8.4. Computational time .. 21

Appendix: Revision notes .. 22

References ... 24

3

Copyright notice

Copyright © Bayesys.com. Bayesys is a free and an open-source

software package. This manual is distributed under the terms of a

CC BY-SA license: Creative Commons Attribution-ShareAlike 4.0

International License.

THE BAYESYS SYSTEM IS DISTRIBUTED AND LICENSED FREE OF CHARGE IN

THE HOPE IT WILL BE USEFUL. BECAUSE OF THIS, THERE IS NO WARRANTY OF

ANY KIND FOR THE ACCURACY OR USEFULNESS OF THIS INFORMATION

EXCEPT AS REQUIRED BY APPLICABLE LAW OR EXPRESSLY AGREED IN

WRITING.

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

4

Acknowledgements

1. This work is supported by the ERSRC Fellowship project EP/S001646/1 “Bayesian

Artificial Intelligence for Decision Making under Uncertainty” [1], by the project

partner Agena Ltd, and by The Alan Turing Institute.

2. Bayesys makes use of the AgenaRisk Bayesian Network software. Bayesys enables

users to automatically convert a learned graph into a parameterised Bayesian Network

in AgenaRisk.

3. Bayesys makes use of the open-source GraphViz software. The GraphViz Java API,

written by Laszlo Szathmary, is incorporated into this project. Link to Laszlo’s Github

page: https://github.com/jabbalaci/graphviz-java-api

4. I would like to thank the following people for their feedback and recommendations:

Kiattikun Chobtham, Yang Liu, Dr Neville Kenneth Kitson and Dr Zhigao Guo.

https://github.com/jabbalaci/graphviz-java-api

5

Introduction

This manual describes the Bayesys open-source Bayesian network structure learning system.

This is a JAVA Netbeans project in active development. This manual refers to the BETA

version 1.7. Frequent revisions will continue to be published at www.bayesys.com. (or

http://bayesian-ai.eecs.qmul.ac.uk/bayesys/). For an overview of any key revisions made

between released versions, refer to the appendix.

http://www.bayesys.com/
http://bayesian-ai.eecs.qmul.ac.uk/bayesys/

6

1. Getting started [with the Netbeans project]

Bayesys is implemented in JAVA Netbeans IDE. What is described in this document applies

to the Windows OS. While the project also runs on MAC and Linux OS, the functions that

relate to the third-party Graphviz software may have compatibility issues on MAC and Linux

and may fail to produce the graphs in PDF; although you will be able to get the graphs in CSV.

To set up the Netbeans project:

a) Download the latest Java Development Kit (JDK), appropriate for the OS you use, from

https://www.oracle.com/java/technologies/javase-downloads.html

b) Download the latest full version of Netbeans IDE from https://netbeans.org

c) Download the Bayesys Netbeans project from www.bayesys.com. The project is

compressed in a ZIP file extension. Extract the contents of the file to your preferred

directory.

d) OPTIONAL: You can skip this step if you are not an AgenaRisk user license holder.

Open-source AgenaRisk licenses, linked to this implementation, are yet to be issued.

Download and install AgenaRisk from www.agenarisk.com.

e) Run Netbeans IDE. Go to File, Open Project, and browse to the directory you have

extracted the Bayesys project. You will see or a newer version,

indicating that the folder is readable as a Netbeans project. Select the readable folder

and click on Open Project to load Bayesys into Netbeans.

Once the project loads into Netbeans, you will be able to view its contents as shown in Fig 1.1.

If not, click on to expand the ‘BNlearning’ directory.

https://www.oracle.com/java/technologies/javase-downloads.html
https://netbeans.org/
http://www.bayesys.com/
http://www.agenarisk.com/

7

Fig 1.1. The list of classes and other files based on Bayesys BETA v1.5.

To run the project, click the run button. If the button is disabled, make sure that one of

the classes under the BNlearning directory is selected; e.g., the class GUI.java.

8

2. Learning a Bayesian network

What follows describes the structure learning process based on the SaiyanH hybrid Bayesian

Network (BN) structure learning algorithm. Currently, this is the only algorithm available in

Bayesys. The full description of SaiyanH can be found in [2]. Note that SaiyanH is based on

Saiyan [3], which was an experimental early version no longer available in Bayesys.

To initiate structure learning and generate a Directed Acyclic Graph (DAG), select the

process Structure learning under tab Main. This will also enable tab Learning which allows

the user to change the parameter inputs of SaiyanH. [NOTE: this feature is currently disabled

for further testing; you may run SaiyanH with its default parameter inputs].

2.1. Structure learning from data

Place your data file named trainingData.csv placed in folder Input.

• Each column in trainingData.csv should represent a variable; the data file must not

include an ID column.

• The dataset should not include missing data values. You can address this issue by

replacing all empty cells with a new state called missing. This way, the complete

dataset can then be used for structure learning under the assumption that missing

values are not missing at random.

• The dataset should only include discrete variables. The algorithm assumes a unique

discrete state for each unique variable value.

2.1.1. Structure learning from both data and knowledge process

The structure learning process also enables subtab Knowledge-based constraints under tab

Learning. [NOTE: this feature is currently disabled for further testing]. The user can

incorporate the following knowledge-based constraints into the structure learning process:

a) Temporal order constraints can be specified in the input file constraintsTemporal.csv

which is placed in folder Input. The temporal constraints specify that a variable within

a higher tier cannot serve as a parent of a variable within a lower tier, encoded as shown

in the example of Fig 2.1. Note that not all tiers need to incorporate the same number

of variables, and not all variables need to be assigned to a tier. The system will assume

that variables not assigned to a particular tier are under no temporal restrictions.

Note that while temporal constraints are optional, the file

constraintsTemporal.csv needs to exist in folder Input even if no restrictions are

specified within the file; i.e., as provided when you first download Bayesys.

Furthermore, the subtab Knowledge-based constraints, under tab Learning, gives the

option to the user to specify whether the algorithm should further prohibit edges

between variables of the same tier.

9

Fig 2.1. Hypothetical temporal constraints in input file constraintsTemporal.csv. These restrictions

specify that a variable within a higher tier cannot serve as a parent of a variable within a lower tier. The

column ID (number of max constraints over all variables) and column END which is placed at the end

of the final tier, must be present in this input file as shown in the figure.

b) Directed arc constraints can be specified in the input file constraintsDirected.csv

which is placed in folder Input. The directed constraints specify which arcs must be

preserved within the graph under discovery. They can be encoded as shown in the

example of Fig 2.2. While directed restrictions are also optional, the input file

constraintsDirected.csv needs to be present in folder Input even if no restrictions are

specified; i.e., as provided when you first download Bayesys.

Fig 2.2. Hypothetical directed constraints in input file constraintsDirected.csv. These restrictions specify

that there must be a directed arc from each parent to each child. The column ID must be present in this

input file as shown in the figure.

2.2. Outputs generated

The structure learning process generates a number of outputs, some of which are optional.

These are:

a) Arcs: the file DAGlearned.csv in folder Output. This file simply captures the arcs

discovered.

b) Graphs: Three PDF files that capture the learning progress of SaiyanH by means of

graphical structure, from phase 1 to phase 3. The phase 3 graph represents the final

learned graph; i.e., the graph that associates with DAGlearned.csv.

This output is optional. To generate the graphs, you must select Save graphs

under Structure learning in tab Main. The PDF files are generated in directory

Output/SaiyanH.

c) Associational scores: Four CSV files that capture the marginal associational scores

generated during phase 1 of SaiyanH (one file), and the conditional associational scores

generated during phase 2 of SaiyanH (three files). The three files that correspond to

phase 2 represent scores classified as conditional dependency, conditional

independency, and conditional insignificance.

This output is optional. To generate the CSV files, select Save associational

scores under Structure learning in tab Main. The CSV files are generated in directory

Output/ SaiyanH.

10

3. Evaluate a learned graph

Select Evaluate graph in tab Main to evaluate a learned graph with respect to the ground truth

graph. The evaluation process is separated into a graph-based and an inference-based

evaluation, as shown in Fig 3.1. Moreover, if you select Generate DAGlearned.PDF under

Evaluate graph in tab Main, this will generate the corresponding graph of DAGlearned.csv in

a PDF file.

Fig 3.1. The graph-based and inference-based evaluations of a learned graph based on Bayesys v1.63.

The first five graph-based evaluators (those ticked in Fig 3.1) require two input files:

a) the DAGtrue.csv in folder Input, and

b) the DAGlearned.csv in folder Output,

encoded as shown in Fig 3.2. If you are running Evaluate graph together with Structure

learning, then the DAGlearned.csv will be generated automatically in folder Output at the end

of the structure learning process, and before the system runs the evaluation process. If you are

running Evaluate graph without Structure learning (e.g., evaluating a previously learned graph

or a learned graph produced by some other algorithm), then you need to place both

DAGtrue.csv and DAGlearned.csv files in the Input and Output folders respectively.

Fig 3.2. An example of the DAGtrue/DAGlearned.csv input/output file.

These five graph-based evaluators produce scores that approximate the relevance of the learned

graph with respect to the ground truth graph. The implementation assumes that DAGtrue is a

DAG or a Mixed Ancestral Graph (MAG). While SaiyanH always produces a DAG in

DAGlearned.csv, the system allows for other types of edges to be included in DAGlearned.csv

as those shown in Table 3.1. This is useful if you are looking to evaluate a graph generated by

11

some other algorithm, with the scoring criteria listed in Table 3.1. The material that follows is

comes from [4].

Table 3.1. The penalty weights used by the scoring metrics implemented in Bayesys [4].

Rule True graph Learned graph Penalty Reasoning

1 A →  B A →  B, A o→ B 0 Complete match
2 A →  B A ↔  B, A − B ,  A ←  B,  A←o B 0.5 Partial match

3 A →  B A ⊥  B 1 No match

4 A ↔  B Any edge/arc 0 Latent confounder

5 A ⊥  B A ⊥  B 0 Complete match
6 A ⊥  B Any edge/arc 1 Incorrect dependency discovered

The five scoring metrics are:

a) Confusion matrix stats: produces the following scores:

• True Positives (𝑇𝑃): the number of correct edges discovered in the learned graph.

• Half True Positives (𝑇𝑃 × 0.5): the number of partially correct edges discovered

in the learned graph; e.g., ←, −, or ↔ instead of →.

• False Positives (𝐹𝑃): the number of incorrect arcs or edges discovered in the

learned graph.

• True Negatives (𝑇𝑁): the number of correct direct independencies discovered in

the learned graph.

• False negatives (𝐹𝑁): the number of incorrect direct independencies discovered

in the learned graph.

b) Precision: defined as TP/(TP + FP), and represents the rate of correct direct

dependencies from those discovered.

c) Recall: defined as TP/(TP + FN), and represents the rate of direct dependencies

discovered from those in the true graph.

d) F1 Score: which represents the harmonic mean of Recall and Precision, defined as:

F1 = 2
𝑟𝑝

𝑟 + 𝑝

where 𝑟 is Recall and 𝑝 is Precision. The F1 score ranges from 0 to 1, where 1 represents

the highest score (with perfect Precision and Recall) and 0 the lowest.

e) Structural Hamming Distance (SHD): defined as the minimum number of edge

insertions, deletions, and arc reversals that are needed in order to transform the learned

graph into the true graph. To be consistent with Table 3.1, the number of insertions and

deletions generate a penalty of 1, whereas arc reversals generate a penalty of 0.5.

f) DAG Dissimilarity Metric (DDM): a score that ranges from −∞ to 1, where a score of

1 indicates perfect agreement between the two graphs. The score moves to −∞ the

stronger the dissimilarity is between the two graphs. Specifically, if we compare how

dissimilar the graph 𝐴 is with respect to graph 𝐵, then

12

DDM =
TP +

r
2 − 𝐹𝑁 − 𝐹𝑃

t

where 𝑟 is the number of arcs from 𝐵 reoriented in 𝐴, and 𝑡 is total number of arcs in

𝐵.

i. Balanced Scoring Function (BSF): This is a balanced score that takes into

consideration all the confusion matrix parameters (i.e., TP, TN, FP, and FN) to balance

the score between direct independencies and direct dependencies [4]. Specifically,

BSF = 0.5 (
TP

𝑎
+

TN

𝑖
−

FP

𝑖
−

FN

𝑎
)

where 𝑎 is the numbers of edges and 𝑖 is the number of direct independences in the true

graph, and

𝑖 =
𝑛(𝑛 − 1)

2
− 𝑎

where 𝑛 is the number of variables in the data. The BSF score ranges from -1 to 1,

where -1 corresponds to the worst possible graph, 1 to the graph that matches the true

graph, whereas a score of 0 corresponds to an empty or a fully connected graph.

Further to the above five scoring metrics, the feature Indep. graphical fragments returns the

number of independent graphical fragments (also known as disjoint subgraphs) found in

DAGlearned.csv with respect to all of the variables in trainingData.csv. Note that this process

requires that trainingData.csv is in folder Input, in addition to the DAGlearned.csv and

DAGtrue.csv files discussed above.

 Finally, selecting BIC score will produce the inference-based score Bayesian

Information Criterion (BIC). Note that this process also requires the trainingData.csv file in

folder Input. The BIC score in Bayesys represents one2 of the standard forms of BIC, and is

computed as follows:

𝐵𝐼𝐶 = 𝐿𝐿(𝐺|𝐷) − (
𝑙𝑜𝑔2𝑁

2
) 𝐹

for graph 𝐺 given data 𝐷, where 𝐿𝐿 is the log-likelihood, 𝑁 is the sample size of 𝐷, and 𝐹 is

the number of free parameters (also known as independent parameters) in 𝐺. Assuming 𝑉

represents the set of the variables 𝑣𝑖 in graph 𝐺, and |𝑉| is the size of set 𝑉, the number of free

parameters 𝐹 is:

𝐹 = ∑(𝑟𝑖 − 1)

|𝑉|

𝑖

∏ 𝑞𝑗

|𝜋𝑣𝑖
|

𝑗

where 𝑟𝑖 is the number of states of 𝑣𝑖, 𝜋𝑣𝑖
 is the parent set of 𝑣𝑖, |𝜋𝑣𝑖

| is the size of set 𝜋𝑣𝑖
, and

𝑞𝑗 is the number of states of 𝑣𝑗 in parent set 𝜋𝑣𝑖
.

2 As of Bayesys v1.7, the UI gives the option to the user to change the log scale in the BIC equation.

13

4. Convert DAG into a BN model in AgenaRisk

Select Generate BN model to convert a learned DAG into a BN model in the AgenaRisk BN

modelling software (based on AgenaRisk’s SDK 6120). This process requires the input files

trainingData.csv in folder Input and DAGlearned.csv in folder Output. The output of this

process is bnLearned.cmp in folder Output, and which can be loaded in AgenaRisk.

Note that running the BN model in AgenaRisk requires a license. Special licenses will

be issued in due course.

14

5. Worked 3-step example: Structure Learning, Evaluation, and

BN model.

The example illustrated in this section is based on the ASIA data example which you can find

in folder ASIA example placed in the main directory of the Netbeans project. These files are

taken from the Bayesys data repository [5], which includes more case studies. To reproduce

the example, rename the appropriate ASIA files into DAGtrue.csv and trainingData.csv and

place them in folder Input.

5.1. Structure learning

Run Bayesys and select Structure learning, along with Save graphs and Save associational

scores. Hit run in tab Main. The following files are almost instantly produced in directory

Output/SaiyanH:

a) three PDFs that correspond to the graphs shown in Fig 5.1 (i.e., the three phases in

SaiyanH),

b) four CSV files that represent the marginal and conditional dependence scores from

phases 1 and 2, as shown in Fig 5.2.

Fig 5.3 presents relevant information generated in the terminal window of Netbeans, during

this process.

Fig 5.1. The three PDF graphs generated after selecting Save graphs. They correspond to the three phases

of SaiyanH. The outputs are based on the ASIA 10k sample-size example. In this example, outputs of

phases 2 and 3 are identical because score-based learning did not discover a graph with a higher score.

15

Fig 5.2. The four CSV files generated after selecting Generate DAGlearned.PDF. They capture the

marginal (left sheet) and conditional dependence associational scores. Note that, in the three conditional

score files, column 𝐴 represents the conditional variable. The outputs are based on the ASIA 10k sample-

size example.

Fig 5.3. The output information generated in the terminal window of Netbeans after performing structure

learning on the ASIA 10k sample-size example.

16

5.2. Evaluate graph

Following the process described in subsection 5.1, select Evaluate graph in tab Main. In tab

Evaluation, select all of the scoring metrics. Hit run in tab Main. The process will instantly

produce the information shown in Fig 5.4 in the terminal window of Netbeans. Note that the #

of independent graphical fragments will always be 1 for graphs generated by SaiyanH, since it

learns graphs that enable full propagation of evidence by design [2].

The Evaluate graph process can be performed with or without Structure learning. If

you are performing this process without first running the example described in subsection 5.1,

you will need to place the trainingData.csv, DAGtrue.csv, and DAGlearned.csv in the

appropriate directories as discussed in Section 3.

Fig 5.4. The output information generated in the terminal window of Netbeans after running the Evaluate

graph process, and with all of the scoring metrics selected in tab Evaluation. The output is based on the

ASIA 10k sample-size example.

17

5.3. Generate BN model

Select Generate BN model in tab Main to generate the AgenaRisk BN model file

bnLearned.cmp in folder Output. Note that this process can be performed with or without

Structure learning, as long as trainingData.csv and DAGlearned.csv files exist in folders Input

and Output respectively. The learned BN model can be loaded in AgenaRisk, as shown in Fig

5.5. Fig 5.6 presents the relevant output information generated in the terminal window of

Netbeans during this process.

Fig 5.5. The BN model after loading bnLearned.cmp file in AgenaRisk, based on the ASIA 10k sample-

size example.

Fig 5.6. The output information generated in the terminal window of Netbeans after running the Generate

BN model process in Bayesys.

18

6. Add noise to data

The process Add noise to data was implemented in Bayesys as part of the empirical evaluation

assessments in [6]. This process is independent of other processes. Selecting Add noise to data

will enable tab Noisy data as shown in Fig 6.1. This process requires trainindData.csv as input

in folder Input, and produces the output files in directory Output/Noisy data.

There are three types of noise, and these can be simulated independently or in

combinations of two. For example, selecting two types of noise under Independent noise

dataset will produce two new datasets, and each dataset will correspond to each type of noise

selected, whereas selecting two types of noise under Combined noise dataset will produce one

dataset that incorporates both types of noise. To perform all three types of noise on the same

data, this can be done by running the process twice. For example, you could add noise 𝑆 and 𝐼

on the first run, and rerun the process to add noise 𝑀 on the output of the first run.

The filename of the output data file depends on the noisy case/s selected from those

shown in Fig 6.1 and the numerical parameter which represents the rate of noise; e.g., parameter

0.05 implies each data point will have 5% chance of being manipulated. For example, selecting

case 𝑀 with parameter 0.05 will produce the filename trainingData_M5, whereas selecting the

combined cases 𝑀 and 𝐼 will produce the filename trainingData_MI5. Fig 6.2 presents the

output of the terminal window in Netbeans after selecting cases 𝑀 and 𝐼 under Combined noise

dataset, with parameter set to 0.05, on the ASIA trainingData_ASIA_10k.csv sample dataset.

Fig 6.1. Features of tab Noisy data, which is enabled when selecting the process Add noise to data.

Fig 6.2. The output in the terminal window after applying cases 𝑀 and 𝐼, with parameters 0.05 for each

case, to the ASIA trainingData_ASIA_10k.csv sample dataset.

19

7. Generate MAG

A MAG (i.e., Mixed Ancestral Graph) is used in BN problems that incorporate latent variables.

The process Generate MAG was implemented in Bayesys as part of the empirical evaluation

assessments in [6]. This process is independent of other processes.

Generate MAG requires three input files. These are a) DAGtrue.csv, b)

trainindData.csv, and c) trainingDataMAG.csv, all in folder Input. The file

trainingDataMAG.csv is simply a copy of trainingData.csv that incorporates all variables

minus those which you would like to make latent. For example, if trainingData.csv includes

variables {𝐴, 𝐵, 𝐶, 𝐷, 𝐸}, and trainingDataMAG.csv includes variables {𝐴, 𝐶, 𝐷, 𝐸}, then the

system will produce the MAG of DAGtrue.csv in which variable 𝐵 is latent.

Running Generate MAG produces two output files in directory Output/MAG. These are

MAGtrue.csv and MAGtrue.pdf. Both outputs capture the same information. Specifically,

MAGtrue.csv captures the edges of MAG, revised from DAGtrue.csv, whereas MAGtrue.pdf

represents the graph of MAGtrue.csv. Figures 7.1 and 7.2 present an example taken from [5]

[6], where the ground truth DAG of the classic ALARM network is converted into the

corresponding MAG that incorporates the two specified latent variables.

Fig 7.1. The ground truth DAG of the ALARM network case study as used in [5] [6]. Number of variables: 37.

Number of arcs: 46.

20

Fig 7.2. One of the ground truth MAGs of the ALARM network case study used in [5] [6]. Number of variables:

35. Number of edges: 46. Missing variables: LVFAILURE, SHUNT. Blue and red edges represent arcs and bi-

directed edges in MAG, respectively, that are not present in the ground truth DAG.

21

8. Troubleshooting and things to know

8.1. Input data files

a) Variable and state names should not include a comma. This is because the data is

read as Comma Separated Values (CSV) and the system automatically considers a

comma as a data value separator.

b) Variable names should not start with a numeric value.

c) The naming of the input files should match those specified in this document; e.g.,

trainingData.csv.

d) Any variable names specified in temporal or directed knowledge-based constraints,

such as in constraintsTemporal.csv, should match (case sensitive) the variable

names in trainingData.csv.

8.2. While running the system

e) Before you run Bayesys, make sure that you close ALL of the input and output files.

If an output file remains open while running Bayesys, the system may still complete

a process without an error, but also without replacing any files that were running in

the background.

8.3. Netbeans terminal output errors

f) ERROR: “I/O error while writing the dot source to temp file!”. This error associates

with the PDF graphs generated when calling the GraphViz software. This error may

occur when a PDF file being generated by Bayesys is already in use by the OS.

However, you may sometimes get this error for no apparent reason (problems with

cache). When this happens, check that the output PDF files have been correctly

revised by Bayesys (e.g., by checking time modified in file). Otherwise, rerun the

process and the error should not appear during the second run.

8.4. Computational time

g) Large graphs with hundreds of variables increase computational time faster than

linear. The computational time of SaiyanH is also heavily dependent on the sample

size of the input data. Keep in mind that generating graphs in PDF that contain

hundreds of variables may significantly contribute to the overall computational

time.

22

Appendix: Revision notes

v1.5 Main revision notes:

1. The way Precision score is computed has been revised (this also influences the F1 score).

2. The Evaluate graph process now gives the option to the user to generate DAGlearned.pdf

which represents the graph of DAGlearned.csv.

3. A new main process has been added, called Add noise to data (refer to Section 6).

4. A new main process has been added, called Generate MAG (refer to Section 7).

5. SaiyanH will infrequently fail to orient all edges during phase 2. When this happens, the

orientation of the edges will be randomised. The terminal window now outputs this

information.

v1.6 Main revision notes:

1. DAGlearned.pdf generator, under process Evaluate graph, is now optional and now also

supports edges o→ and o−o.

2. The number of independent graphical fragments is now separated as an independent

evaluation process, under tab Evaluation, that requires trainingData.csv to run.

v1.7 Main revision notes:

1. Improvements have been made to the code that reads data from CSV files. The following

data corruption issues have now been resolved:

a. Errors caused by datasets with excess commas, often caused due to heavy file editing.

b. Errors caused by datasets that incorporate hidden values. These values were neither

visible in CSV form, nor in TXT form, nor readable in String code JAVA format.

This type of data corruption is often caused by the formatting style of the source from

which data are copied into a file.

2. The system will now end the structure leaning process (and inform the user in the terminal

window) if the input dataset is found to incorporate missing data values (i.e., empty data

cells).

3. The system will now end the structure leaning process (and inform the user in the terminal

window) if the name of a variable starts with a numeric character.

4. The system will now warn the user when the name of a variable in DAGlearned.csv does

not match any of the node names in DAGtrue.csv. The warning will be generated in the

terminal window in red font colour.

23

5. The system will now warn the user when a variable has more than 20 states. The warning

will be generated in the terminal window in red font colour.

6. The BIC score reported in the terminal window, under Evaluation, is now based on the

standard version of BIC and also indicates the log scale used in the BIC equation. The UI

now enables the user to change the log scale used in the BIC equation.

7. The Evaluation now returns F1=0 when F1=NaN; i.e., in the case of 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 0.

8. The runtime information for SaiyanH now includes the runtime spent in each of the three

learning phases.

9. The terminal output information on the number of nodes in DAGtrue has been corrected.

24

References

[1] Constantinou, A. C. (2018). Bayesian Artificial Intelligence for Decision Making under Uncertainty.

Engineering and Physical Sciences Research Council (EPSRC), EP/S001646/1.

[2] Constantinou, A. C. (2020). Learning Bayesian networks that enable full propagation of evidence.

arXiv:2004.04571 [cs.LG].

[3] Constantinou, A. C. (2020). Learning Bayesian networks with the Saiyan algorithm. ACM Transactions

on Knowledge Discovery from Data.

[4] Constantinou, A. (2019). Evaluating structure learning algorithms with a balanced scoring

function. arXiv 1905.12666 [cs.LG].

[5] Constantinou, A. C., Liu, Y., Chobtham, K., Guo, Z., and Kitson, N. K. (2020). The Bayesys data and

Bayesian network repository. Queen Mary University of London, London, UK. [Online]. Available:

http://bayesian-ai.eecs.qmul.ac.uk/bayesys/ and http://www.bayesys.com

[6] Constantinou, A. C., Liu, Y., Chobtham, K., Guo, Z., and Kitson, N. K. (2020). Large-scale empirical

validation of Bayesian Network structure learning algorithms with noisy data. arXiv:2005.09020 [cs.LG]

https://arxiv.org/abs/2004.04571
https://arxiv.org/abs/1905.12666
http://bayesian-ai.eecs.qmul.ac.uk/bayesys/
http://www.bayesys.com/
https://arxiv.org/abs/2005.09020

